forked from ygCoconut/mAP_3Dvolume
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_custom.py
125 lines (106 loc) · 4.96 KB
/
demo_custom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
#!/usr/bin/env python
# coding: utf-8
"""
This script allows you to obtain gt instance and prediction instance matches for the 3D mAP model evaluation. At the end, you can evaluate the mean average precision of your model based on the IoU metric. To do the evaluation, set evaluate to True (default).
"""
import os.path
import sys
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
import time
import argparse
import numpy as np
from mAP_3Dvolume.vol3d_eval_custom import VOL3Deval
from vol3d_util_custom import seg_iou3d_sorted,heatmap_to_score,readh5
##### 1. I/O
def get_args():
parser = argparse.ArgumentParser(description='Evaluate the mean average precision score (mAP) of 3D segmentation volumes')
parser.add_argument('-gt','--gt-seg', type=str, default='~/my_ndarray.h5',
help='path to ground truth segmentation result')
parser.add_argument('-p','--predict-seg', type=str, default='~/my_ndarray.h5',
help='path to predicted instance segmentation result')
# either input the pre-compute prediction score
parser.add_argument('-ps','--predict-score', type=str, default='',
help='path to confidence score for each prediction')
# or avg input affinity/heatmap prediction
parser.add_argument('-ph','--predict-heatmap', type=str, default='',
help='path to heatmap for all predictions')
parser.add_argument('-phc','--predict-heatmap-channel', type=int, default=-1,
help='heatmap channel to use')
parser.add_argument('-th','--threshold', type=str, default='5e3, 1.5e4',
help='get threshold for volume range [possible to have more than 4 ranges, c.f. cocoapi]')
parser.add_argument('-o','--output-name', type=str, default='map_output',
help='output name prefix')
parser.add_argument('-dt','--do-txt', type=int, default=1,
help='output txt for iou results')
parser.add_argument('-de','--do-eval', type=int, default=1,
help='do evaluation')
args = parser.parse_args()
return args
def load_data(args):
# load data arguments
pred_seg = readh5(args.predict_seg)
gt_seg = readh5(args.gt_seg)
# check shape match
sz_gt = np.array(gt_seg.shape)
sz_pred = pred_seg.shape
if np.abs((sz_gt-sz_pred)).max() > 0:
print('Warning: size mismatch. gt: ', sz_gt, ', pred: ', sz_pred)
sz = np.minimum(sz_gt, sz_pred)
pred_seg = pred_seg[:sz[0], :sz[1], :sz[2]]
gt_seg = gt_seg[:sz[0], :sz[1], :sz[2]]
if args.predict_score != '':
# Nx2: pred_id, pred_sc
pred_score = readh5(args.predict_score)
elif args.predict_heatmap != '':
pred_heatmap = readh5(args.predict_heatmap)
r_id, r_score, _ = heatmap_to_score(pred_seg, pred_heatmap, args.predict_heatmap_channel)
pred_score = np.vstack([r_id, r_score]).T
else: # default: sort by size
ui, uc = np.unique(pred_seg, return_counts=True)
uc = uc[ui > 0]
ui = ui[ui > 0]
pred_score = np.ones([len(ui), 2], int)
pred_score[:, 0] = ui
pred_score[:, 1] = uc
thres = np.fromstring(args.threshold, sep=",")
areaRng = np.zeros((len(thres)+2, 2), int)
areaRng[0, 1] = 1e10
areaRng[-1, 1] = 1e10
areaRng[2:, 0] = thres
areaRng[1:-1, 1] = thres
return gt_seg, pred_seg, pred_score, areaRng
def main():
"""
Convert the grount truth segmentation and the corresponding predictions to a coco dataset
to evaluate this dataset. The 3D volume is comparable to a video-type dataset and will therefore
be converted as a video instance segmentation
input:
output: coco_result_vid.json : This file will be written to your current directory and contains
the metadata about the dataset.
"""
## 1. Load data
start_time = int(round(time.time() * 1000))
print('\t1. Load data')
args = get_args()
gt_seg, pred_seg, pred_score, areaRng = load_data(args)
## 2. create complete mapping of ids for gt and pred:
print('\t2. Compute IoU')
result_p, result_fn, pred_score_sorted = seg_iou3d_sorted(pred_seg, gt_seg, pred_score, areaRng)
stop_time = int(round(time.time() * 1000))
print('\t-RUNTIME:\t{} [sec]\n'.format((stop_time-start_time)/1000))
## 3. Evaluation script for 3D instance segmentation
if args.output_name == '':
args.output_name = args.predict_seg[:args.predict_seg.rfind('.')]
v3dEval = VOL3Deval(result_p, result_fn, pred_score_sorted, output_name=args.output_name)
if args.do_txt > 0:
v3dEval.save_match_p()
v3dEval.save_match_fn()
if args.do_eval > 0:
print('start evaluation')
#Evaluation
#v3dEval.params.areaRng = [[0, 1e10], [0, 1e5], [1e5, 5e5], [5e5, 1e10]]
v3dEval.params.areaRng = areaRng
v3dEval.accumulate()
v3dEval.summarize()
if __name__ == '__main__':
main()