-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcommon.py
186 lines (135 loc) · 4.28 KB
/
common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import numpy as np
from scipy.constants import codata
from scipy import special
k = codata.value('Boltzmann constant in eV/K')
class Parameters:
def __init__(self):
self.A0 = 10.0
self.g0 = 10.0
self.Eg = 1.1828
self.T = 300
self.gamma = 0.001
self.gamma2 = 0.029
self.step_func_gamma = 0.029
self.Ef = 0.5 * self.Eg
self.E = np.arange(1.08, 1.35, 0.001)
self.En = np.array([self.Eg])
self.Ec = np.arange(0.45, 0.65, 0.001)
self.Ev = np.arange(-0.75, -0.65, 0.001)
self.CP = np.array([1.0])
self.CB = np.array([0.49475, 0.54384, 0.60827])
self.VB = np.array([-0.69223, -0.7062, -0.7275])
self.HH = np.array([-0.69223, -0.7062, -0.7275])
self.LH = np.array([-0.71])
self.wsk = np.array(['h', 'h', 'h'])
self.me = 0.063
self.mehh = 0.51
self.melh = 0.082
self.a = np.zeros(len(self.E))
self.g_bulk = np.zeros(len(self.E))
self.DOS = np.zeros(len(self.E))
self.DOS2 = np.zeros(len(self.E))
self.Pik = np.zeros(len(self.E))
self.Normal = np.zeros(len(self.E))
self.Pik_mieszany = np.zeros(len(self.E))
self.Hevisajd = np.zeros(len(self.E))
self.Delty = np.zeros(len(self.E))
self.Epocz = np.zeros(len(self.E))
self.LAMBDA = (1.24 / self.E)
def get_A0(self):
return self.A0
def get_g0(self):
return self.g0
def get_Eg(self):
return self.Eg
def get_T(self):
return self.T
def get_gamma(self):
return self.gamma
def get_gamma2(self):
return self.gamma2
def get_step_func_gamma(self):
return self.step_func_gamma
def get_Ef(self):
return self.Ef
def get_E(self):
return self.E
def get_En(self):
return self.En
def get_CP(self):
return self.CP
def get_LAMBDA(self):
return self.LAMBDA
def set_A0(self, A0):
self.A0 = A0
def set_g0(self, g0):
self.g0 = g0
def set_Eg(self, Eg):
self.Eg = Eg
self.Ef = 0.5 * Eg
def set_T(self, T):
self.T = T
def set_E(self, E):
self.E = E
def set_En(self, En):
self.En = En
def set_CP(self, CP):
self.CP = CP
def set_gamma(self, gamma):
self.gamma = gamma
def set_gamma2(self, gamma2):
self.gamma2 = gamma2
def set_step_func_gamma(self, step_func_gamma):
self.step_func_gamma = step_func_gamma
def set_LAMBDA(self, LAMBDA):
self.LAMBDA = (1.24 / self.E)
def read_params_from_UI(self):
return 0
def update(self):
return 0
def Schodek(x):
Y = np.zeros(len(x))
for i in range(0, len(x)):
if float(x[i]) < 0.0:
Y[i] = 0.0
elif float(x[i]) >= 0.0:
Y[i] = 1.0
return Y
def Delta(x):
Y = np.zeros(len(x))
for i in range(0, len(x)):
if x[i] >= -0.0005 and x[i] <= 0.0005:
Y[i] = 1.0
return Y
def Calka(arg, fun):
C = 0.0
for i in range(0, len(arg) - 1):
C = C + (0.5 * (arg[i + 1] - arg[i]) * (fun[i + 1] + fun[i]))
return C
def DOS_rozmyty_erf(Ene, E_prz, W):
return 0.5 * (special.erf((Ene - E_prz) / W) + 1.0)
def DOS_rozmyty_cauchy(
Ene, E_prz,
W): #Rozmyte schodki - funkcja dystrybuanty rozkladu Cauchyego
return ((1.0 / np.pi) * np.arctan((Ene - E_prz) / W) + 0.5)
def Ogon_gestosci_stanow(Ene, E_prz, Amplituda0,
w): #Rozmycie krawedzi absorpcji
Y = 0.0
if Ene <= E_prz:
Y = Amplituda0 * (np.exp((Ene - E_prz) / W))
elif Ene > E_prz:
Y = Amplituda0
return Y
def pik_Gaussowski(Ene, E_prz, w): #Pik Gaussa - rozklad normalny
return ((1.0 /
(w * np.sqrt(2.0 * np.pi))) * np.exp(-((
(Ene - E_prz)**2) / (2.0 * w**2))))
def pik_Lorentza(Ene, E_prz, w): #Pik Lorentza - rozklad Cauchyego
return 1.0 / ((np.pi * w) * (1.0 + ((Ene - E_prz) / w)**2))
def distribution_Boltzmann(Ek, Ep, T):
dEne = Ek - Ep
return np.exp(dEne / (k * T))
def distribution_FD(Ene, EF, T):
return (1.0 / (np.exp((Ene - EF) / (k * T)) + 1.0))
def distribution_Planck(Ene, T):
return ((Ene**2) / (np.exp((Ene) / (k * T)) - 1.0))