-
Notifications
You must be signed in to change notification settings - Fork 23
/
test_carla.py
272 lines (232 loc) · 9.99 KB
/
test_carla.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
#! /usr/bin/env python3
# -*- coding: utf-8 -*-
# File : test.py
# Author : Bowen Pan
# Email : panbowen0607@gmail.com
# Date : 09/25/2018
#
# Distributed under terms of the MIT license.
"""
"""
from utils import Foo
from models import VPNModel
from datasets import OVMDataset
from opts import parser
from transform import *
import torchvision
import torch
from torch import nn
from torch.optim.lr_scheduler import MultiStepLR
from torch import optim
import os
import time
from torch.nn.utils import clip_grad_norm
# from examples.cognitive_mapping.Logger import Logger
import cv2
import shutil
import dominate
from dominate.tags import *
mean_rgb = [0.485, 0.456, 0.406]
std_rgb = [0.229, 0.224, 0.225]
def main():
global args, web_path, best_prec1
parser.add_argument('--test-views', type=int, default=94)
parser.add_argument('--view-bias', type=int, default=8)
best_prec1 = 0
args = parser.parse_args()
network_config = Foo(
encoder=args.encoder,
decoder=args.decoder,
fc_dim=args.fc_dim,
num_views=args.n_views,
num_class=args.num_class,
transform_type=args.transform_type,
output_size=args.label_resolution,
)
val_dataset = OVMDataset(args.data_root, args.eval_list,
transform=torchvision.transforms.Compose([
Stack(roll=True),
ToTorchFormatTensor(div=True),
GroupNormalize(mean_rgb, std_rgb)
]),
num_views=network_config.num_views, input_size=args.input_resolution,
label_size=args.segSize, use_mask=args.use_mask, use_depth=args.use_depth, is_train=False)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=args.batch_size,
num_workers=args.num_workers, shuffle=False,
pin_memory=True
)
mapper = VPNModel(network_config)
mapper = nn.DataParallel(mapper.cuda())
if args.weights:
if os.path.isfile(args.weights):
print(("=> loading checkpoint '{}'".format(args.weights)))
checkpoint = torch.load(args.weights)
args.start_epoch = checkpoint['epoch']
mapper.load_state_dict(checkpoint['state_dict'])
print(("=> loaded checkpoint '{}' (epoch {})"
.format(args.evaluate, checkpoint['epoch'])))
else:
print(("=> no checkpoint found at '{}'".format(args.weights)))
criterion = nn.NLLLoss(weight=None, size_average=True)
eval(val_loader, mapper, criterion)
web_path = os.path.join(args.visualize, args.store_name)
if os.path.isdir(web_path):
pass
else:
os.makedirs(web_path)
with dominate.document(title=web_path) as web:
for step in range(len(val_loader)):
if step % args.print_freq == 0:
h2('Step {}'.format(step*args.batch_size))
with table(border = 1, style = 'table-layout: fixed;'):
with tr():
for i in range(args.test_views):
path = 'Step-{}-{}.png'.format(step * args.batch_size, i)
with td(style='word-wrap: break-word;', halign='center', valign='top'):
img(style='width:128px', src=path)
path = 'Step-{}-pred.png'.format(step * args.batch_size)
with td(style='word-wrap: break-word;', halign='center', valign='top'):
img(style='width:128px', src=path)
path = 'Step-{}-gt.png'.format(step * args.batch_size)
with td(style='word-wrap: break-word;', halign='center', valign='top'):
img(style='width:128px', src=path)
with open(os.path.join(web_path, 'index.html'), 'w') as fp:
fp.write(web.render())
def eval(val_loader, mapper, criterion):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
best_prec1 = 0
mapper.eval()
end = time.time()
web_path = os.path.join(args.visualize, args.store_name)
if os.path.isdir(web_path):
pass
else:
os.makedirs(web_path)
prec_stat = {}
for i in range(args.num_class):
prec_stat[str(i)] = {'intersec': 0, 'union': 0, 'all': 0}
with open('./metadata/colormap_coarse.csv') as f:
lines = f.readlines()
cat = []
for line in lines:
line = line.rstrip()
cat.append(line)
cat = cat[1:]
label_dic = {}
for i, value in enumerate(cat):
key = str(i)
label_dic[key] = [int(x) for x in value.split(',')[1:]]
for step, (rgb_stack, target, rgb_origin, OverMaskOrigin) in enumerate(val_loader):
data_time.update(time.time() - end)
with torch.no_grad():
input_rgb_var = torch.autograd.variable(rgb_stack).cuda()
_, output = mapper(x=input_rgb_var, return_feat=True)
target_var = target.cuda()
target_var = target_var.view(-1)
upsample = output.view(-1, args.label_resolution, args.label_resolution, args.num_class).transpose(3,2).transpose(2,1).contiguous()
upsample = nn.functional.upsample(upsample, size=args.segSize, mode='bilinear', align_corners=False)
upsample = nn.functional.softmax(upsample, dim=1)
output = torch.log(upsample.transpose(1,2).transpose(2,3).contiguous().view(-1, args.num_class))
_, pred = upsample.data.topk(1, 1, True, True)
pred = pred.squeeze(1)
loss = criterion(output, target_var)
losses.update(loss.item(), input_rgb_var.size(0))
prec_stat = count_mean_accuracy(output.data, target_var.data, prec_stat)
prec1 = accuracy(output.data, target_var.data, topk=(1,))[0]
top1.update(prec1.item(), rgb_stack.size(0))
best_prec1 = max(prec1, best_prec1)
batch_time.update(time.time() - end)
end = time.time()
if step % args.print_freq == 0:
output = ('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
step + 1, len(val_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1))
print(output)
pred = np.uint8(pred.cpu()[0])
predMask = np.uint8(np.zeros((args.segSize, args.segSize, 3)))
for i, _ in enumerate(pred):
for j, _ in enumerate(pred[0]):
key = str(pred[i][j])
predMask[i,j] = label_dic[key]
predMask = cv2.resize(predMask[:, :, ::-1], (256, 256), interpolation=cv2.INTER_NEAREST)
cv2.imwrite(os.path.join(web_path, 'Step-{}-pred.png'.format(step * args.batch_size, i)), predMask)
gtMask = OverMaskOrigin[0].cpu().numpy()
print('gtMask.shape: ', gtMask.shape)
gt_rgb = np.uint8(np.zeros((gtMask.shape[0], gtMask.shape[0], 3)))
for i, _ in enumerate(gtMask):
for j, _ in enumerate(gtMask[0]):
key = str(gtMask[i][j])
gt_rgb[i,j] = label_dic[key]
gt_rgb = cv2.resize(gt_rgb[:, :, ::-1], (256, 256), interpolation=cv2.INTER_NEAREST)
cv2.imwrite(os.path.join(web_path, 'Step-{}-gt.png'.format(step * args.batch_size, i)), gt_rgb)
rgb = rgb_origin.cpu().numpy()[0]
for i in range(args.test_views):
cv2.imwrite(os.path.join(web_path, 'Step-{}-{}.png'.format(step * args.batch_size, i)), cv2.resize(rgb[(i + args.view_bias) % 8], (256, 256), interpolation=cv2.INTER_NEAREST))
sum_acc = 0
counted_cat = 0
sum_iou = 0
for key in prec_stat:
if int(prec_stat[key]['all']) != 0:
acc = prec_stat[key]['intersec'] / (prec_stat[key]['all'] + 1e-10)
iou = prec_stat[key]['intersec'] / (prec_stat[key]['union'] + 1e-10)
sum_acc += acc
sum_iou += iou
counted_cat += 1
mean_acc = sum_acc / counted_cat
mean_iou = sum_iou / counted_cat
output = ('Testing Results: Prec@1 {top1.avg:.3f} Mean Prec@1 {meantop:.3f} Mean IoU {meaniou:.3f} Loss {loss.avg:.5f}'
.format(top1=top1, loss=losses, meantop=mean_acc, meaniou=mean_iou))
print(output)
output_best = '\nBest Prec@1 of: %.3f' % (best_prec1)
print(output_best)
return top1.avg
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def count_mean_accuracy(output, target, prec_stat):
_, pred = output.topk(1, 1, True, True)
pred = pred.squeeze(1)
for key in prec_stat.keys():
label = int(key)
pred_map = np.uint8(pred.cpu().numpy() == label)
target_map = np.uint8(target.cpu().numpy() == label)
intersection_t = pred_map * (pred_map == target_map)
union_t = pred_map + target_map - intersection_t
prec_stat[key]['intersec'] += np.sum(intersection_t)
prec_stat[key]['union'] += np.sum(union_t)
prec_stat[key]['all'] += np.sum(target_map)
return prec_stat
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__=='__main__':
main()