forked from f90/Wave-U-Net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUtils.py
executable file
·173 lines (153 loc) · 7.14 KB
/
Utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import tensorflow as tf
import numpy as np
import librosa
def getTrainableVariables(tag=""):
return [v for v in tf.trainable_variables() if tag in v.name]
def getNumParams(tensors):
return np.sum([np.prod(t.get_shape().as_list()) for t in tensors])
def crop_and_concat(x1,x2, match_feature_dim=True):
'''
Copy-and-crop operation for two feature maps of different size.
Crops the first input x1 equally along its borders so that its shape is equal to
the shape of the second input x2, then concatenates them along the feature channel axis.
:param x1: First input that is cropped and combined with the second input
:param x2: Second input
:return: Combined feature map
'''
if x2 is None:
return x1
x1 = crop(x1,x2.get_shape().as_list(), match_feature_dim)
return tf.concat([x1, x2], axis=2)
def random_amplify(sample):
'''
Randomly amplifies or attenuates the input signal
:return: Amplified signal
'''
for key, val in list(sample.items()):
if key != "mix":
sample[key] = tf.random_uniform([], 0.7, 1.0) * val
sample["mix"] = tf.add_n([val for key, val in list(sample.items()) if key != "mix"])
return sample
def crop_sample(sample, crop_frames):
for key, val in list(sample.items()):
if key != "mix" and crop_frames > 0:
sample[key] = val[crop_frames:-crop_frames,:]
return sample
def pad_freqs(tensor, target_shape):
'''
Pads the frequency axis of a 4D tensor of shape [batch_size, freqs, timeframes, channels] or 2D tensor [freqs, timeframes] with zeros
so that it reaches the target shape. If the number of frequencies to pad is uneven, the rows are appended at the end.
:param tensor: Input tensor to pad with zeros along the frequency axis
:param target_shape: Shape of tensor after zero-padding
:return: Padded tensor
'''
target_freqs = (target_shape[1] if len(target_shape) == 4 else target_shape[0]) #TODO
if isinstance(tensor, tf.Tensor):
input_shape = tensor.get_shape().as_list()
else:
input_shape = tensor.shape
if len(input_shape) == 2:
input_freqs = input_shape[0]
else:
input_freqs = input_shape[1]
diff = target_freqs - input_freqs
if diff % 2 == 0:
pad = [(diff/2, diff/2)]
else:
pad = [(diff//2, diff//2 + 1)] # Add extra frequency bin at the end
if len(target_shape) == 2:
pad = pad + [(0,0)]
else:
pad = [(0,0)] + pad + [(0,0), (0,0)]
if isinstance(tensor, tf.Tensor):
return tf.pad(tensor, pad, mode='constant', constant_values=0.0)
else:
return np.pad(tensor, pad, mode='constant', constant_values=0.0)
def LeakyReLU(x, alpha=0.2):
return tf.maximum(alpha*x, x)
def AudioClip(x, training):
'''
Simply returns the input if training is set to True, otherwise clips the input to [-1,1]
:param x: Input tensor (coming from last layer of neural network)
:param training: Whether model is in training (True) or testing mode (False)
:return: Output tensor (potentially clipped)
'''
if training:
return x
else:
return tf.maximum(tf.minimum(x, 1.0), -1.0)
def resample(audio, orig_sr, new_sr):
return librosa.resample(audio.squeeze().T, orig_sr, new_sr).T
def load(path, sr=22050, mono=True, offset=0.0, duration=None, dtype=np.float32):
# ALWAYS output (n_frames, n_channels) audio
y, orig_sr = librosa.load(path, sr, mono, offset, duration, dtype)
if len(y.shape) == 1:
y = np.expand_dims(y, axis=0)
return y.T, orig_sr
def crop(tensor, target_shape, match_feature_dim=True):
'''
Crops a 3D tensor [batch_size, width, channels] along the width axes to a target shape.
Performs a centre crop. If the dimension difference is uneven, crop last dimensions first.
:param tensor: 4D tensor [batch_size, width, height, channels] that should be cropped.
:param target_shape: Target shape (4D tensor) that the tensor should be cropped to
:return: Cropped tensor
'''
shape = np.array(tensor.get_shape().as_list())
diff = shape - np.array(target_shape)
assert(diff[0] == 0 and (diff[2] == 0 or not match_feature_dim))# Only width axis can differ
if (diff[1] % 2 != 0):
print("WARNING: Cropping with uneven number of extra entries on one side")
assert diff[1] >= 0 # Only positive difference allowed
if diff[1] == 0:
return tensor
crop_start = diff // 2
crop_end = diff - crop_start
return tensor[:,crop_start[1]:-crop_end[1],:]
def spectrogramToAudioFile(magnitude, fftWindowSize, hopSize, phaseIterations=10, phase=None, length=None):
'''
Computes an audio signal from the given magnitude spectrogram, and optionally an initial phase.
Griffin-Lim is executed to recover/refine the given the phase from the magnitude spectrogram.
:param magnitude: Magnitudes to be converted to audio
:param fftWindowSize: Size of FFT window used to create magnitudes
:param hopSize: Hop size in frames used to create magnitudes
:param phaseIterations: Number of Griffin-Lim iterations to recover phase
:param phase: If given, starts ISTFT with this particular phase matrix
:param length: If given, audio signal is clipped/padded to this number of frames
:return:
'''
if phase is not None:
if phaseIterations > 0:
# Refine audio given initial phase with a number of iterations
return reconPhase(magnitude, fftWindowSize, hopSize, phaseIterations, phase, length)
# reconstructing the new complex matrix
stftMatrix = magnitude * np.exp(phase * 1j) # magnitude * e^(j*phase)
audio = librosa.istft(stftMatrix, hop_length=hopSize, length=length)
else:
audio = reconPhase(magnitude, fftWindowSize, hopSize, phaseIterations)
return audio
def reconPhase(magnitude, fftWindowSize, hopSize, phaseIterations=10, initPhase=None, length=None):
'''
Griffin-Lim algorithm for reconstructing the phase for a given magnitude spectrogram, optionally with a given
intial phase.
:param magnitude: Magnitudes to be converted to audio
:param fftWindowSize: Size of FFT window used to create magnitudes
:param hopSize: Hop size in frames used to create magnitudes
:param phaseIterations: Number of Griffin-Lim iterations to recover phase
:param initPhase: If given, starts reconstruction with this particular phase matrix
:param length: If given, audio signal is clipped/padded to this number of frames
:return:
'''
for i in range(phaseIterations):
if i == 0:
if initPhase is None:
reconstruction = np.random.random_sample(magnitude.shape) + 1j * (2 * np.pi * np.random.random_sample(magnitude.shape) - np.pi)
else:
reconstruction = np.exp(initPhase * 1j) # e^(j*phase), so that angle => phase
else:
reconstruction = librosa.stft(audio, fftWindowSize, hopSize)
spectrum = magnitude * np.exp(1j * np.angle(reconstruction))
if i == phaseIterations - 1:
audio = librosa.istft(spectrum, hopSize, length=length)
else:
audio = librosa.istft(spectrum, hopSize)
return audio