-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodules_tf.py
executable file
·248 lines (141 loc) · 9.22 KB
/
modules_tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import numpy as np
from tensorflow.python import debug as tf_debug
from tensorflow.contrib.rnn import GRUCell
from tensorflow.contrib import rnn
import config
tf.logging.set_verbosity(tf.logging.INFO)
def wavenet_block(inputs, conditioning, is_train, dilation_rate = 2, kernel_size = config.kernel_size, name = "name"):
pad = (kernel_size - 1) * dilation_rate
conditioning = tf.layers.batch_normalization(tf.layers.conv1d(conditioning, config.num_filters, 1, dilation_rate = 1, padding = 'valid', name = name+"_cond"), training = is_train)
con_pad_forward = tf.pad(inputs, [[0,0],[dilation_rate,0],[0,0]],"CONSTANT")
con_sig_forward = tf.layers.batch_normalization(tf.layers.conv1d(con_pad_forward, config.num_filters, kernel_size, dilation_rate = dilation_rate, padding = 'valid', name = name+"_1"), training = is_train)
sig = tf.sigmoid(con_sig_forward + conditioning)
con_tanh_forward = tf.layers.batch_normalization(tf.layers.conv1d(con_pad_forward, config.num_filters, kernel_size, dilation_rate = dilation_rate, padding = 'valid', name = name+"_2"), training = is_train)
tanh = tf.tanh(con_tanh_forward + conditioning)
outputs = tf.multiply(sig,tanh)
residual = outputs + inputs
skip = tf.layers.conv1d(outputs,config.skip_filters,1, name = name+"_skip")
residual = tf.layers.conv1d(residual,config.num_filters,1, name = name+"_residual")
return skip, residual
def wave_archi(inputs, conditioning, is_train):
receptive_field = 2**config.wavenet_layers
inputs = tf.pad(inputs, [[0,0],[config.first_conv -1 ,0],[0,0]],"CONSTANT")
residual = tf.layers.batch_normalization(tf.layers.conv1d(inputs, config.num_filters, config.first_conv, name = "first_conv"), training = is_train)
skips = []
output = tf.layers.conv1d(residual,config.skip_filters,1, name = "first_skip")
for i in range(config.wavenet_layers):
skip, residual = wavenet_block(residual,conditioning, is_train, dilation_rate = config.dilation_rates[i], name = "npss_block_"+str(i+1))
skips.append(skip)
for skip in skips:
output+=skip
conditioning = tf.layers.batch_normalization(tf.layers.conv1d(conditioning, config.skip_filters, 1, dilation_rate = 1, padding = 'valid', name = "cond"), training = is_train)
output = output + conditioning
output = tf.nn.tanh(output)
output = tf.layers.conv1d(output,config.output_features,1, name = "Output" )
return output
def encoder_conv_block(inputs, layer_num, is_train, num_filters = config.filters):
output = tf.nn.relu(tf.layers.batch_normalization(tf.layers.conv2d(inputs, num_filters * 2**int(layer_num/config.augment_filters_every), (config.filter_len,1)
, strides=(2,1), padding = 'same', name = "G_"+str(layer_num), kernel_initializer=tf.random_normal_initializer(stddev=0.02)), training = is_train, name = "Encoder_BN"+str(layer_num)))
# print(output.shape)
# print(num_filters * 2**int(layer_num/config.augment_filters_every))
return output
def decoder_conv_block(inputs, layer, layer_num, is_train, num_filters = config.filters):
deconv = tf.image.resize_images(inputs, size=(layer.shape[1],1), method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
deconv = tf.nn.relu(tf.layers.batch_normalization( tf.layers.conv2d(deconv, layer.shape[-1]
, (config.filter_len,1), strides=(1,1), padding = 'same', name = "D_"+str(layer_num), kernel_initializer=tf.random_normal_initializer(stddev=0.02)), training = is_train, name = "Decoder_BN"+str(layer_num)))
# print(deconv.shape)
# print(layer.shape)
deconv = tf.concat([deconv, layer], axis = -1)
return deconv
def encoder_decoder_archi(inputs, is_train):
"""
Input is assumed to be a 4-D Tensor, with [batch_size, phrase_len, 1, features]
"""
encoder_layers = []
encoded = inputs
encoder_layers.append(encoded)
for i in range(config.encoder_layers):
encoded = encoder_conv_block(encoded, i, is_train)
encoder_layers.append(encoded)
encoder_layers.reverse()
decoded = encoder_layers[0]
for i in range(config.encoder_layers):
decoded = decoder_conv_block(decoded, encoder_layers[i+1], i, is_train)
return decoded
def full_network(condsi, env, is_train):
conds = tf.tile(tf.reshape(condsi,[config.batch_size,1,-1]),[1,config.max_phr_len,1])
inputs = tf.concat([conds, env], axis = -1)
inputs = tf.reshape(inputs, [config.batch_size, config.max_phr_len , 1, -1])
inputs = tf.nn.relu(tf.layers.batch_normalization(tf.layers.dense(inputs, config.filters
, name = "S_in", kernel_initializer=tf.random_normal_initializer(stddev=0.02)), training = is_train), name = "S_in_BN")
output = encoder_decoder_archi(inputs, is_train)
output = tf.tanh(tf.layers.batch_normalization(tf.layers.dense(output, config.output_features, name = "Fu_F", kernel_initializer=tf.random_normal_initializer(stddev=0.02)), training = is_train))
output = tf.reshape(output, [config.batch_size, config.max_phr_len, -1])
return output
def discriminator(inputs, condsi, is_train):
conds = tf.tile(tf.reshape(condsi,[config.batch_size,1,-1]),[1,config.max_phr_len,1])
inputs = tf.concat([inputs, conds], axis = -1)
inputs = tf.reshape(inputs, [config.batch_size, config.max_phr_len , 1, -1])
inputs = tf.nn.relu(tf.layers.batch_normalization(tf.layers.dense(inputs, config.filters
, name = "D_in", kernel_initializer=tf.random_normal_initializer(stddev=0.02)), training = is_train, name = "D_in_BN"))
encoded = inputs
for i in range(config.encoder_layers):
encoded = encoder_conv_block(encoded, i, is_train)
encoded = tf.squeeze(encoded)
output = tf.layers.batch_normalization(tf.layers.dense(encoded, 1, name = "Fu_F", kernel_initializer=tf.random_normal_initializer(stddev=0.02)), training = is_train, name = "bn_fu_out")
return tf.squeeze(output)
def content(inputs, is_train):
inputs = tf.reshape(inputs, [config.batch_size, config.max_phr_len , 1, -1])
inputs = tf.nn.relu(tf.layers.batch_normalization(tf.layers.dense(inputs, config.filters
, name = "D_in", kernel_initializer=tf.random_normal_initializer(stddev=0.02)), training = is_train, name = "D_in_BN"))
encoded = inputs
for i in range(config.encoder_layers):
encoded = encoder_conv_block(encoded, i, is_train)
encoded = tf.squeeze(encoded)
output = tf.layers.batch_normalization(tf.layers.dense(encoded, config.input_features, name = "Fu_F", kernel_initializer=tf.random_normal_initializer(stddev=0.02)), training = is_train, name = "bn_fu_out")
return encoded, tf.squeeze(output)
def content_encode(inputs, is_train):
inputs = tf.reshape(inputs, [config.batch_size, config.max_phr_len , 1, -1])
inputs = tf.nn.relu(tf.layers.batch_normalization(tf.layers.dense(inputs, config.filters
, name = "D_in", kernel_initializer=tf.random_normal_initializer(stddev=0.02)), training = is_train, name = "D_in_BN"))
encoded = inputs
for i in range(config.encoder_layers):
encoded = encoder_conv_block(encoded, i, is_train)
encoded = tf.squeeze(encoded)
output = tf.layers.batch_normalization(tf.layers.dense(encoded, 4, name = "Fu_F", kernel_initializer=tf.random_normal_initializer(stddev=0.02)), training = is_train, name = "bn_fu_out")
# import pdb;pdb.set_trace()
return tf.squeeze(output)
def full_network_encode(encoded, condsi, env, is_train):
conds = tf.concat([encoded, condsi], axis = -1)
conds = tf.tile(tf.reshape(conds,[config.batch_size,1,-1]),[1,config.max_phr_len,1])
inputs = tf.concat([conds, env], axis = -1)
inputs = tf.reshape(inputs, [config.batch_size, config.max_phr_len , 1, -1])
inputs = tf.nn.relu(tf.layers.batch_normalization(tf.layers.dense(inputs, config.filters
, name = "S_in", kernel_initializer=tf.random_normal_initializer(stddev=0.02)), training = is_train), name = "S_in_BN")
output = encoder_decoder_archi(inputs, is_train)
output = tf.tanh(tf.layers.batch_normalization(tf.layers.dense(output, config.output_features, name = "Fu_F", kernel_initializer=tf.random_normal_initializer(stddev=0.02)), training = is_train))
output = tf.reshape(output, [config.batch_size, config.max_phr_len, -1])
return output
def main():
vec = tf.placeholder("float", [config.batch_size, config.max_phr_len, 1])
tec = np.random.rand(config.batch_size, config.max_phr_len,1) # batch_size, time_steps, features
conds = tf.placeholder("float", [config.batch_size, 7])
condi = np.random.rand(config.batch_size, 7)
is_train = tf.placeholder(tf.bool, name="is_train")
# seqlen = tf.placeholder("float", [config.batch_size, 256])
with tf.variable_scope('full_Model') as scope:
out_put = discriminator( conds,vec, is_train)
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)
op= sess.run(out_put, feed_dict={conds:condi, vec: tec, is_train: True})
# writer = tf.summary.FileWriter('.')
# writer.add_graph(tf.get_default_graph())
# writer.add_summary(summary, global_step=1)
import pdb;pdb.set_trace()
if __name__ == '__main__':
main()