-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
58 lines (46 loc) · 1.63 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from __future__ import print_function
import json
import keras
from keras.datasets import mnist
from keras.models import Model
from keras.layers import Dense, Dropout, Input
from keras.optimizers import RMSprop
batch_size = 128
num_classes = 10
epochs = 2
# the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(60000, 784)
x_test = x_test.reshape(10000, 784)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
inp = Input((784,))
x = Dense(512, activation='relu')(inp)
x = Dropout(0.2)(x)
x = Dense(512, activation='relu')(x)
x = Dropout(0.2)(x)
out = Dense(num_classes, activation='softmax')(x)
model = Model(inp, out)
model.summary()
model.compile(loss='categorical_crossentropy',
optimizer=RMSprop(),
metrics=['accuracy'])
checkpoint = keras.callbacks.ModelCheckpoint(
filepath='model_{epoch:02d}.hdf5', monitor='val_loss', verbose=0, save_best_only=False,
save_weights_only=False, mode='auto', period=1)
history = model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test),
callbacks=[checkpoint])
with open('history.json', 'w') as f:
json_hist = json.dumps(history.history)
f.write(json_hist)