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ABSTRACT
Most manipulator calibration techniques require expensive

and/or complicated pose measuring devices, such as
theodolites.  This paper investigates a calibration method where
the manipulator endpoint is constrained to a single contact
point and executes self-motions.  From the easily measured
joint angle readings, and an identification model, the
manipulator is calibrated.  Adding a wrist force sensor allows
for the calibration of elastic effects due to end-point forces and
moments.  Optimization of the procedure is discussed.
Experimental results are presented, showing the effectiveness
of the method.

INTRODUCTION
Physical errors, such as machining tolerances, assembly

errors and elastic deformations, cause the geometric properties
of a manipulator to be different from their ideal values.  Model
based error compensation of a robotic manipulator, also known
as robot calibration, is a process to improve manipulator
position accuracy using software.  Classical calibration
involves identifying an accurate functional relationship
between the joint transducer readings and the workspace
position of the end-effector in terms of parameters called
generalized errors (Roth et al., 1987).  This relationship is
found from measured data and used to predict, and compensate
for, the endpoint errors as a function of configuration.

Considerable research has been performed to make
manipulator calibration more effective both in terms of required
number of measurements and computation by the procedure
(Hollerbach, 1988; Hollerbach and Wampler, 1996; Roth et al.,

1987).  Several calibration techniques have been used to
improve robot accuracy (Roth et al., 1987), including open and
closed-loop methods (Everett and Lin, 1988).  Open-loop
methods require an external metrology system to measure the
end-effector pose, such as theodolites.  Obtaining open-loop
measurements is generally very costly and time consuming, and
must be performed regularly for very high precision systems.
In contrast, closed-loop methods only need joint angle sensing,
and the robot becomes self-calibrating.  In closed-loop
calibration, constraints are imposed on the end-effector of the
robot, and the kinematic loop closure equations are adequate to
calibrate the manipulator from joint readings alone.  Past
closed-loop methods have had the robot moving along an
unsensed sliding joint at the endpoint, or constraining the end-
effector to lie on a plane (Ikits and Hollerbach, 1997; Zhuang et
al., 1999).

This paper investigates a closed-loop calibration method
that was among a number suggested by (Bennett and
Hollerbach, 1991).  In the method, called here Single Endpoint
Contact (SEC) calibration, the robot endpoint is constrained to
a single contact point.  Using an end-effector fixture equivalent
to a ball joint, the robot executes self-motions to move to
different configurations.  At each configuration, manipulator
joint sensors provide data that is used in an SEC identification
algorithm to estimate the robot’s parameters.  A total least
squares optimization procedure is used to improve the
calibration accuracy (Hollerbach and Wampler, 1996).

In addition to geometric errors, this calibration method is
able to identify elastic structural deformation errors due to task
loads and gravity, since arbitrary forces can be applied to the
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SEC fixture.  The error model is extended to include the elastic
errors, by explicitly considering the task loading and payload
weight dependency of the errors.  This is done by incorporating
a method called GEC, which has been developed to identify the
elastic errors as a function of the manipulator’s configuration
and task loading wrenches at the end-effector (Meggiolaro et
al., 1998).

Results presented here show that the location selected for
endpoint contact significantly affects SEC calibration
performance.  A technique to find the optimal calibration point
is presented with simulation results.

Also, to use the method for applications without significant
task loads, it is necessary to minimize the forces between the
manipulator and the calibration point fixture.  Large forces
could result in significant elastic deformations on the SEC
fixture and the manipulator, compromising the identification
accuracy.  This paper shows how to keep endpoint forces small
while moving a manipulator under endpoint constraint.

The calibration method is applied experimentally to a 6
DOF hydraulic manipulator.  The error parameters of the robot
are identified and used to predict, and compensate for, the
endpoint errors as a function of configuration.  These
experimental results show that the method is able to effectively
and significantly improve the manipulator’s accuracy without
requiring special and expensive metrology equipment.

ANALYTICAL BACKGROUND

Model Based Error Compensation

The distortion of a manipulator from its ideal shape due to
such factors as manufacturing errors results in the reference
frames that define the manipulator joints being slightly
displaced from their expected, ideal locations.  This creates
significant end-effector errors when the manipulator’s ideal
model is used to predict its performance.  The position and
orientation of a manipulator’s frame Fi

real with respect to its

ideal location Fi

ideal is represented by a 4x4 homogeneous
matrix Ei, see Figure 1.  The translational part of matrix Ei is
composed of 3 coordinates, and the rotational part of matrix Ei

is the result of the product of three consecutive rotations.
These 6 parameters are called generalized error parameters,
which can be a function of the system geometry and joint
variables (Everett and Suryohadiprojo, 1988).  For an n degree
of freedom manipulator, there are 6(n+1) generalized errors.
These can be represented in vector form as a 6(n+1) x 1 vector,
called εε, assuming that both the manipulator and the location of
its base are being calibrated.  If only the manipulator is being
calibrated, then the number of generalized errors is 6n.

 The end-effector position and orientation error ∆∆X is
defined as the 6x1 vector that represents the difference between
the real position and orientation of the end-effector and the
ideal one:

∆∆X = Xreal  − Xideal       (1)

Frame Fi-1
real

Z i
ideal

Xi
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Yi
ideal

Xi
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realO i
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Figure 1. Frame Translation and Rotation Due to
Errors for ith Link

where Xreal and Xideal are the 6x1 vectors composed of the three
positions and three orientations of the end-effector reference
frame in the inertial reference system for the real and ideal
cases, respectively.  Since the generalized errors are small, ∆∆X
can be calculated using the linear equation in εε:

∆∆X = Je εε (2)

where Je is the 6x6(n+1) Jacobian matrix of the end-effector

error ∆∆X with respect to the elements of the generalized error
vector εε, also known as Identification Jacobian matrix (Zhuang
et al., 1999).  If the generalized errors, εε, can be found from
calibration measurements, then the correct end-effector position
and orientation error can be calculated using Equation (2) and
be compensated.  The method to obtain εε from experimental
measurements is explained below.

Identification of the Generalized Errors

The identification of the 6(n+1) components of generalized
errors εε for an n DOF manipulator is based on measuring the
components of the end-effector error vector ∆∆X at a finite
number (m) of different manipulator configurations.  The m
configurations are represented by m vectors of joint variables,
q1, q2,…, qm.  Equation (2) can be written m times:

∆

∆
∆

∆

X

X

X

X

J

J

J

J

1

2

m

t

e 1

e 2

e m

t

q

q

q

=



















=



















⋅ = ⋅
...

( )

( )

...

( )

    
εε εε              (3)

where ∆∆Xt is the m x 1 vector formed by all measured vectors
∆∆X at the m different configurations and Jt is the 6m x 6(n+1)
Total Identification Jacobian matrix.  The matrix Jt is formed
from the m Identification Jacobian matrices Je at the m
configurations.  To compensate for the effects of measurement
noise, the number of measurements m is in general much larger
than n.

In practice, the position coordinates of ∆∆X are easier to
measure than the orientations, so often only the three position
coordinates of ∆∆X are measured.  In this case, twice the number
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of measurements is required to obtain the same calibration
accuracy.

If the generalized errors are constant, then a unique least-
squares estimate $εε  can be calculated by (Roth et al., 1987):

( )$
1

εε ∆∆= ⋅
−

J J J Xt
T

t t
T

t
        (4)

If the Identification Jacobian matrix Je(qi) contains linear
dependent columns, then Equation (4) will give estimates with
poor accuracy.  This occurs when there is redundancy in the
error model, in which case it is not possible to distinguish the
amount of the error contributed by each generalized error εij.
To eliminate this problem, the columns of Je must be reduced
to a linear independent set.  This reduction can be performed
analytically by using the equations presented in (Meggiolaro
and Dubowsky, 2000).  The generalized errors are then grouped
into a smaller independent set, resulting in identification with
improved accuracy.

However, most manipulator calibration techniques to
obtain the measurements in Equation (3) require expensive
and/or complicated pose measuring devices, such as
theodolites.  Thus the current interest in closed-loop methods
that do not require such equipment.  The SEC closed-loop
calibration method, which uses data only from the internal
sensors of a robot, is described below.

SINGLE ENDPOINT CONTACT (SEC) CALIBRATION

In Single Endpoint Contact calibration, instead of moving
the end-effector to different positions to obtain the calibration
measurements in Equation (3), the endpoint position is kept
fixed with changes only in its orientation.  This is equivalent to
grasping a ball joint, resulting in three calibration equations per
pose.  The advantage of this method is that it does not require
measurements of the robot position using external sensors,
requiring only an inexpensive and compact device such as a
ball joint.  Only one endpoint needs to be known and the joint
angle measurements.  The kinematic loop closure equations are
enough to calibrate the manipulator from joint readings alone.
In order to calibrate the system, the closed chain must have
some mobility.  So, a spatial manipulator must have 4 DOF's or
more to be calibrated using this method.  For planar
manipulators, the point contact condition provides 2
constraints, so a planar manipulator with as few as 3 DOF's
may be calibrated using SEC.

Analytical Development

Consider the manipulator gripping the end-effector fixture
at a constant location (x0,y0,z0), and define qreal as the measured
vector of joint variables.  The end-effector error is the
difference between the actual position of the end-effector, at the
SEC fixture, and the ideal position calculated from the ideal
kinematic equations applied to the measured qreal.  This ideal
position is the end-effector position that an ideal manipulator
would achieve if it was moved to the measured joint readings

of the actual robot.  As both ideal and real manipulator
positions are evaluated at the same configuration qreal, the
resulting end-effector error ∆∆X is only due to the generalized
errors.  From Equations (1-2), the end-effector position error
∆∆X is

∆∆X = Xreal(qreal)−Xideal(qreal) = [x0,y0,z0]
T
−Xideal = Je(q

real) ε  ε  (5)

Here the three end-effector reference frame orientations are
eliminated from the error model, as they are not measured.  The
three position components of the end-effector reference frame
in the inertial reference system are represented by the 3x1
endpoint vectors Xreal and Xideal.

Since both Je and Xideal can be calculated at each point
using the measured joint positions and ideal direct kinematics,
the only remaining unknown in Equation (5) is the generalized
error vector εε.

∆∆X Xreal(x0,y0,z0)

Xideal

Figure 2. Real and Ideal Positions of a Manipulator
End-Effector

So, as the robot executes self-motions to different
configurations, the real robot parameters can be estimated from
the readings of the internal position sensors and from the
identification model.  A total least squares optimization
procedure, shown in Equation (4), is then used to improve the
calibration accuracy.

As in every calibration not having a priori knowledge of
the task constraint dimensions, the scale of the mechanism must
be set, i.e., one link length or other length parameter has to be
measured by independent means (Bennett and Hollerbach,
1991).  In the SEC method, if any of the coordinates x0, y0 or z0

of the end-effector fixture is known, then this scaling
requirement is already satisfied.  However, if none of these
coordinates is known, then one length parameter needs to be
independently measured.  Note that it is not necessary to know
a priori the location of the end-effector fixture, since its
location can be introduced as an unknown.  In this case,
Equation (5) is rewritten as
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where the unknown vector εε∗∗ contains both generalized errors
and the coordinates of the end-effector fixture.

In addition to geometric errors, this calibration method is
able to identify elastic structural deformation errors, since
arbitrary forces can be applied to the SEC fixture.  In this case,
an extended error model must be used to identify the elastic
errors as a function of the payload wrench at the end-effector,
as discussed before.  Defining F as the desired force applied to
the end-effector and J as the robot Jacobian, then the vector ττ
of applied joint torques/forces to the manipulator is

ττ = JT (-F)            (7)

F

–F

ττ1

ττ2
ττ3

F

–F

F

–F

ττ1

ττ2
ττ3

Figure 3. Calibration of Elastic Errors due to an
Arbitrary Force

Control

To use the SEC method, the manipulator must be
controlled to move the joint variables while keeping the end-
effector still.  To accomplish this without causing large and
unknown forces on the end-effector that would deform the SEC
fixture or the manipulator, a projection approach is adopted.  In
the method the control input is a projected error proportional
feedback of the form:

u = (I – J# ·J) · [K·(qr – q)]           (8)

where J is the robot Jacobian, J# is the Jacobian pseudoinverse,
K is a positive definite matrix, and qr is the desired manipulator
configuration.  The matrix (I – J# ·J) is the orthogonal
projection operator in the Jacobian null space, which guarantees
that joint velocities do not result in any end-effector velocity.
Note that  the above  control  scheme is equivalent to using  the

Start

Goal

Start

Goal

Figure 4. Stabilization of the Arm Self-Motions

classical Projected Gradient method (Oriolo, 1994) to solve
redundancy.  It has been shown that the reference configuration
qr is globally stable for this control scheme.  Thus, this control
approach is used to steer the manipulator into different
configurations.

OPTIMIZATION OF THE FIXTURE LOCATION

In SEC calibration, the location of the endpoint device can
significantly affect the calibration performance.  Ideally, the
generalized errors are constant in their frames, and the errors
identified at an arbitrary configuration can be used to
compensate the errors at any other configuration.  In this case,
the chosen location used by the SEC does not influence the
calibration accuracy, since any configuration would lead to the
same constant generalized errors.  However, the generalized
errors are in general functions of the configuration, especially
in systems with significant elastic deformation.  Therefore,
interpolating functions must be chosen to model each
generalized error, and its coefficients must be identified
(Meggiolaro et al., 1998).

Furthermore, depending on the chosen set of measurement
points, the error compensation process involves interpolation or
extrapolation of the generalized error functions.  As a general
mathematical result, the interpolation accuracy can be
improved to the limit of the measurement noise by performing
enough measurements in the desired range.  But the
extrapolation accuracy depends on the chosen set of functions,
especially on how well they model the actual system.  So,
poorly chosen functions may give a reasonable precision in the
interpolation range, but its accuracy is compromised in
configurations outside the measured range.  As a result, the
choice of the measurement ranges at each joint is critical to the
calibration accuracy.

In the SEC calibration, the measurement ranges of each
joint are uniquely defined by the location of the calibration
point.  For a generic manipulator, it is necessary to use
numerical methods to find the measurement ranges.  If the
manipulator inverse kinematic equations can be written, then it
is possible to find analytical solutions for the joint ranges.  For
an ideal 3R planar manipulator, with full-range of all 3 joints
and no interference between links, an analytical solution of the
measurement ranges for each calibration point P has been
found, as given below.

Defining li as the length of link i and P = [r cos ϕ, r sin ϕ]
as the calibration point, the joint angles qi must satisfy:
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The calibrated range of a joint j can then be written as:

]qq,q[q]qq,q[qq 1j0j2j0j2j0j1j0jj ++∪−−∈       (10)
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For a generic 3R manipulator, it is also necessary to
consider the intersection between the ideal solution from
Equation (10) and the mechanical limits of each joint.

Once the measurement ranges of each joint are calculated
and the errors identified using SEC, the calibration
performance can be evaluated by defining a performance index.
This index is based on the idea that measurement interpolation
results in better accuracy than extrapolation.  First consider the
Interpolated Compensation Region (ICR), defined as the region
of the workspace where the compensation algorithm does not
require extrapolation of the error functions.  It represents the
region of the workspace that the manipulator can reach by
independently sweeping its joints through their interpolated
ranges.  Conversely, the Extrapolated Compensation Region
(ECR) is the workspace region where any of the generalized
error functions needs to be extrapolated, resulting in reduced
accuracy.

In order to obtain an ideal location of the calibration point,
a performance index for the SEC method needs to be defined
and optimized.  The volume of the ICR is an example of such
index.  As a calibration point P is chosen to maximize this
volume - therefore minimizing the volume of the ECR - the
overall accuracy of the compensation algorithm is increased.
But in this way, every region of the workspace is given the
same importance, even those that are not useful for the task to
be performed after calibration.  To choose the fixture location
that offers the best accuracy in specific workspace regions, a
more general index is defined, called the Weighted Volume of
the ICR (WV):

∫∫∫ ⋅α=
ICR

dV)z,y,x(WV              (12)

where α(x,y,z)∈[0,1] is a weight function defined in the whole
workspace, representing the importance of each point (x,y,z) on
the chosen task.  Note that if α(x,y,z)=1 in the whole
workspace, then the WV becomes the geometric volume of the
ICR.  The choice of the best fixture location for the SEC
method is obtained by maximizing the function WV.

RESULTS

Simulations of the SEC calibration and the optimization of
the fixture location were performed for two 3R planar

manipulators and a 6-DOF manipulator.  Experiments were
then performed on a Schilling Titan II manipulator to show the
effectiveness of the SEC calibration.

Simulation Results

Two different 3R planar manipulators were considered,
with link lengths (1, 1, 1) and (5, 4, 3).  In both cases an
optimal location of the SEC fixture was found.  For the (1, 1, 1)
manipulator, the location that maximizes the volume of the
interpolated region is at a distance from the robot base equal to
1.0 (see Figure 5).  By using this fixture location, it is possible
to move the manipulator in the full-range of its 3 joints, and the
errors along the entire workspace can be compensated without
extrapolation.  Note that in this example the considered weights
α(x,y,z) of the Weighted Volume are equal to 1.0, i.e., every
region of the workspace is considered equally important.
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Figure 5. ICR Volume as a Function of the Fixture Location

For the (5, 4, 3) planar manipulator, the optimal solution of
the fixture location is at a distance from the robot base equal to
6.0 (see Figure 6).  In this case, however, the ICR is not
coincident with the workspace.  The maximum volume (or
area, since it's a planar manipulator) of the ICR is 341.6, while
the workspace surface is π⋅122 = 452.4.  So, even for the best
choice of the calibration point, still 25% of the calibrated
workspace relies on extrapolation to compensate for the
measured errors.  Figure 7 shows some of the 3R manipulator
configurations corresponding to a fixture location at
P(x,y)=(6,0).  The Interpolated and Extrapolated Compensation
Regions obtained after the calibration process at two different
fixture locations are shown in Figures 8 and 9.  Note that the
ICR obtained from calibration at the optimal fixture location
P=(6,0), shown in Figure 8, is much larger than the one
obtained using P=(10,0).  Thus it is expected that the SEC
calibration at P=(6,0) results in better accuracy than using a
fixture location at P=(10,0).
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Located at (6,0)
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A simulation of the SEC method was applied to a 3R
planar manipulator with link lengths (1m, 1m, 1m).  The
simulation introduced generalized errors that are not constant in
their reference frames, reflecting the effects of elastic
deformations.  To investigate the effects of interpolation and
extrapolation on the measured errors, the chosen identification
functions were different from the introduced error functions,
otherwise the simulation would always result in a perfect fit.

Two different fixture locations are used in the calibration,
at distances 1.0m (the optimal location in this case) and 2.5m
from the manipulator base.  The manipulator is moved to
several measurement configurations, sweeping the joint ranges
allowed by each fixture location.  An RMS uncorrected error of
8.0mm and a measurement noise of 0.1mm were introduced to
both simulations.  After the identification process, the end-
effector was released and the compensated manipulator was
moved to all possible configurations in the workspace.  The
residual error after compensation was then evaluated at each
configuration, and its RMS value was calculated.

For the calibration fixture at 1.0m, the full range of the
three joints was achieved, and the RMS residual error was
0.16mm.  When the fixture location was changed to 2.5m from
the robot base, the RMS residual error was 0.49mm,
approximately 3 times higher.  This poorer accuracy is mainly
due to the measurement range of joint 1 being restricted to the
interval [-49o, 49o], therefore all configurations outside this
range are compensated using extrapolations.  Unless the chosen
interpolation functions perfectly model the generalized errors,
the SEC fixture location plays a critical role on the calibration
accuracy.

Figure 10 shows the RMS residual error for the (1m, 1m,
1m) planar manipulator as a function of the number of
measurement points, for different measurement noise levels.
Note that calibration cannot be made infinitely accurate as the
number of measurement points is increased, and a lower bound
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exists on the calibration error that is dictated by robot
repeatability and calibration measurement error (Roth et al.,
1987).  This is captured by the graph in Figure 9, showing
residual errors tending to the measurement noise levels as the
number of points is increased.
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Figure 10. RMS Residual Error as a Function of the
Number of Measurements

Simulations were also performed for a Schilling Titan II
manipulator, a 6-DOF hydraulic robot.  Using these results the
SEC performance was analyzed for two different calibration
device lengths: 10 and 50 inches (254 and 1270mm).  These
lengths are the distance between the device gripper, attached to
the robot end-effector, and the center of rotation of the
spherical joint.  The device length plays an important role on
the achievable measurement ranges, since it modifies the loop
closure equations.

Due to the rotational symmetry of the system around joint
1, the optimal location of the calibration device is on the
vertical plane defined by the middle of the mechanical limits of
joint 1.  The optimal location for the 254mm device is
calculated at P(x, z) = (550mm, 1800mm), respectively the
horizontal and vertical distances from the manipulator base
along the defined vertical plane.  The volume of the ICR in this
case is 8.33m3.  A second maxima for the ICR volume is
6.66m3, obtained for a device location at P(x, z) = (550mm,
-200mm) from the manipulator base.  For the 1270mm device,
the optimized location is at P(x, z) = (1600mm ,1750mm),
resulting in an ICR volume of 17.8m3.  Note that this volume is
twice the ICR volume obtained from the 254mm device, i.e.,
the 1270mm fixture results in a better calibration accuracy in
this case.

Experimental Results

Figure 11 shows the laboratory system used to
experimentally evaluate the SEC calibration method.  The
manipulator is a Schilling Titan II, a six DOF hydraulic robot
capable of handling payloads in excess of 100 kg.  A handle on
the SEC fixture provides a repeatable grip for the manipulator.

Figure 11. Experimental System

The objective of the experiment is to see if the SEC
calibration method can be practically applied to a real physical
system to improve its absolute accuracy.  The object is to have
the residual error approach the limit set by the position sensing
resolution of the system.  A control technique called Base
Sensor Control (Iagnemma et al., 1997) is used to improve the
system repeatability by greatly reducing the effects of joint
friction.  This control scheme is applied in concert with the
orthogonal projection operator in the Jacobian null space,
defined in Equation (8), minimizing the resulting forces at the
SEC fixture.  The relative positioning root mean square error is
used as a measure of the system repeatability.  Data is taken by
moving the manipulator an arbitrary distance from the test
point and then commanding it back to its original position.  The
measured maximum errors are ±5 mm, and the repeatability of
the system is 2.7 mm (RMS).

Although the Base Sensor Control algorithm greatly
reduces the repeatability errors, there are still 45mm (RMS)
errors in absolute accuracy.  Since the system repeatability is
relatively small with respect to the absolute errors, a model
based error compensation method can be applied to reduce the
accuracy errors, such as the SEC method.

In order to implement SEC, the generalized error functions
were interpolated using approximately 800 measurements of
the robot configuration.  These measurements were performed
for an SEC device with length 155mm located at P(x, z) =
(1440mm, 265mm) from the manipulator base.  Note that the
end-effector fixture location was obtained by the SEC
calibration, since it was not known a priori.  After the
identification process, the compensated manipulator was
moved to 200 different configurations to verify the efficiency
of the SEC method.

Figure 12 shows the convergence of original positioning
errors as large as 98.5mm (44.8mm RMS) to corrected absolute
errors of less than 15mm (5.7mm RMS) with respect to the
base frame.  This demonstrates an overall factor of nearly 8
improvement in absolute accuracy by using the SEC calibration
algorithm.  This improvement in performance shows that such
calibration method is able to effectively identify and correct for
the errors in the system.

Manipulator

SEC Fixture
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Figure 12. Measured and Residual Errors After
Compensation

CONCLUSIONS

In this paper, a calibration method that does not require
endpoint measurements or precision points has been
investigated.  The method constrains the robot end-effector to a
fixture equivalent to a spherical joint.  The required fixture has
the advantage of being inexpensive and compact when
compared to pose measuring devices required by other
calibration techniques.  By forming the manipulator into a
mobile closed kinematic chain, the kinematic loop closure
equations are adequate to calibrate the manipulator from joint
readings alone.  A performance index is introduced to calculate
the optimal location of the calibration device.  The method is
evaluated experimentally on a Schilling Titan II manipulator.
The results show that the calibration method is able to
effectively identify and correct for the errors in the system.
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