forked from harrysouthworth/texmex
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDESCRIPTION
167 lines (167 loc) · 4.32 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
Package: texmex
Type: Package
Title: Statistical Modelling of Extreme Values
Version: 2.4.6
Date: 2020-04-29
Authors@R: c(person("Harry", "Southworth", role=c("aut", "cre"),
email="harry.southworth@gmail.com"),
person(c("Janet", "E."), "Heffernan", role="aut"),
person(c("Paul", "D."), "Metcalfe", role="aut",
,email="paul.metcalfe@gmail.com"),
person("Yiannis", "Papastathopoulos", role="ctb"),
person("Alec", "Stephenson", role="ctb"),
person("Stuart", "Coles", role="ctb"))
Author: Harry Southworth [aut, cre],
Janet E. Heffernan [aut],
Paul D. Metcalfe [aut],
Yiannis Papastathopoulos [ctb],
Alec Stephenson [ctb],
Stuart Coles [ctb]
Maintainer: Harry Southworth <harry.southworth@gmail.com>
Description: Statistical extreme value modelling of threshold excesses, maxima
and multivariate extremes. Univariate models for threshold excesses and maxima
are the Generalised Pareto, and Generalised Extreme Value model respectively.
These models may be fitted by using maximum (optionally penalised-)likelihood,
or Bayesian estimation, and both classes of models may be fitted with covariates
in any/all model parameters. Model diagnostics support the fitting process.
Graphical output for visualising fitted models and return level estimates is
provided. For serially dependent sequences, the intervals declustering algorithm
of Ferro and Segers (2003) <doi:10.1111/1467-9868.00401> is provided, with
diagnostic support to aid selection of threshold and declustering horizon.
Multivariate modelling is performed via the conditional approach of Heffernan
and Tawn (2004) <doi:10.1111/j.1467-9868.2004.02050.x>, with graphical tools for
threshold selection and to diagnose estimation convergence.
License: GPL (>=2)
Depends:
mvtnorm,
ggplot2,
stats
Suggests:
MASS,
gridExtra,
parallel,
lattice,
knitr,
dplyr,
tidyr,
testthat,
devtools,
survival,
ismev
Imports: Rcpp (>= 0.12.18)
LinkingTo: Rcpp
LazyLoad: yes
LazyData: yes
URL: https://github.com/harrysouthworth/texmex
RoxygenNote: 7.1.0
Encoding: UTF-8
VignetteBuilder: knitr
Collate:
'AIC.evm.R'
'Dcond.R'
'Profile_likelihood_HT_unc.R'
'Profile_likelihood_cd_nm_joint_D_KT.R'
'Profile_likelihood_cd_nm_joint_D_KT_neg.R'
'RcppExports.R'
'bootmex.R'
'gpd.sandwich.R'
'gpd.info.R'
'texmexFamily.R'
'cgpd.R'
'chi.R'
'coef.evmSim.R'
'coefficients.evm.R'
'coefficients.migpd.R'
'constructObject.R'
'copulas.R'
'cv.R'
'degp3.R'
'dgev.R'
'dgpd.R'
'efficient.closures.R'
'egp3.R'
'egp3RangeFit.R'
'endPoint.R'
'estimate_HT.R'
'estimate_HT_KPT_joint_posneg_nm.R'
'evm.R'
'evm.simSetSeed.R'
'evmBoot.R'
'evmFit.R'
'evmSim.R'
'extremalIndex.R'
'gev.R'
'ggplot.bayes.R'
'ggplot.boot.R'
'ggplot.cluster.R'
'ggplot.evm.R'
'ggplot.mex.R'
'ggplot.migpd.R'
'ggplot.predict.R'
'ggplot.thresh.R'
'glo.R'
'globalVariables.R'
'gpd.R'
'gpdProfileLikRetLevels.R'
'gpdRangeFit.R'
'gumbel.R'
'hist.evm.R'
'initial_posneg.R'
'jointExceedanceCurves.R'
'mex.R'
'mexDependence.R'
'mexDependenceLowLevelFunctions.R'
'mexMonteCarlo.R'
'mexRangeFit.R'
'mexTransform.R'
'migpd.R'
'migpdCoefs.R'
'mrl.R'
'mspearman.R'
'multivariate.cauchy.R'
'pegp3.R'
'pgev.R'
'pgpd.R'
'plot.bootmex.R'
'plot.evm.R'
'plot.evmSim.R'
'plot.mex.R'
'plot.mexPrediction.R'
'plot.migpd.R'
'plot.predict.link.evm.R'
'plotrl.evm.R'
'ppevm.R'
'predict.evm.R'
'predict.mex.R'
'predictWorkers.R'
'print.bootmex.R'
'print.evm.R'
'print.evmSim.R'
'print.mexDependence.R'
'print.mexPrediction.R'
'print.migpd.R'
'profile_minmax_joint_posneg_KT.R'
'qegp3.R'
'qgev.R'
'qgpd.R'
'qgpd2.R'
'qqevm.R'
'rMaxAR.R'
'regp3.R'
'residuals.evm.R'
'revTransform.R'
'rgev.R'
'rgpd.R'
'roots.R'
'simulate.R'
'sombrero-internal.R'
'summary.evm.R'
'summary.evmSim.R'
'summary.migpd.R'
'summary.predict.mex.R'
'texmex-package.R'
'texmexWorkers.R'
'thinAndBurn.evm.sim.R'
'u2gpd.R'
'weibull.info.R'
'weibull.R'