-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnonSeparableExample.g
executable file
·164 lines (101 loc) · 3.45 KB
/
nonSeparableExample.g
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# example of a digraph where the strong generating set outputted from nauty is not separable
# This provides a counter-example to a conjecture in 'On the constructive orbit problem'
# by Donaldson A.F. and Miller A.
LoadPackage( "NautyTracesInterface" );
LoadPackage( "Grape" );
LoadPackage( "Digraph" );
###################################################################################
#these are some concrete examples
G:=Group([ (1,3,2)(4,5,6)(10,12,11), (1,3,2)(7,8,9) ]);
c:= Random(SymmetricGroup(LargestMovedPoint(G)));
G:=G^c;
G:=Group([ (1,3,2)(4,6,5)(7,9,8)(10,11,12), (1,2,3)(10,11,12) ]);
c:= Random(SymmetricGroup(LargestMovedPoint(G)));
G:=G^c;
G:=Group([ (6,7,8,9,10)(11,12,13,14,15),(1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15) ]);
c:= Random(SymmetricGroup(LargestMovedPoint(G)));
G:=G^c;
###################################################################################
#alternatively one could look for more examples by varying numOfHOrbits, numOfRows and p;
numOfHOrbits:=4;
numOfRows:=2;
p:=5;
basisVecs:= List([1..numOfRows], y->List([1..numOfHOrbits], x-> Random([0..p-1]) ));
genOfH:=[];
for vec in basisVecs do
gen:=();
for posn in [1..numOfHOrbits] do
for entryNum in [1..p-1] do
if vec[posn]=entryNum then
gen:=gen*CycleFromList( [p*(posn-1)+1..p*posn])^entryNum;
fi;
od;
od;
Add(genOfH,gen);
od;
G:=Group(genOfH);
c:= Random(SymmetricGroup(LargestMovedPoint(G)));
G:=G^c;
###################################################################################
vertices:= [1..LargestMovedPoint(G)];
edges:=[];
seenEdges:=[];
for i in [1..LargestMovedPoint(G)] do
for j in [1..LargestMovedPoint(G)] do
if not [i,j] in seenEdges then
Add(edges, Orbit(G, [i,j], OnPairs));
seenEdges:= Union(edges);
fi;
od;
od;
edgesList:=[];
source:=[];
range:=[];
for edgeSet in edges do
store:= Length(vertices)+1;
Add(vertices, store);
for edge in edgeSet do
Add(vertices, Length(vertices)+1);
Add(source, edge[1]);
Add(range, Length(vertices));
Add(source, Length(vertices));
Add(range, edge[2]);
Add(source, store);
Add(range, Length(vertices));
Add(source, Length(vertices));
Add(range, store);
od;
od;
digraph:= Digraph(vertices, source, range);
AutC:=NautyAutomorphismGroup(digraph);
#AutC:=AutomorphismGroup(digraph);
#colorVertices := Filtered(vertices, x-> not x in [1..LargestMovedPoint(G)]);
#Aut:= Stabilizer(AutC, colorVertices, OnSets);
#N:=Normaliser(SymmetricGroup(LargestMovedPoint(G)),G);
#orbsN:= StructuralCopy(Orbits(N));
#Size(N)=Size(Action(N, orbsN[1], OnPoints))*Size(Action(N, orbsN[2], OnPoints));
#A:=Action(Aut, [1..LargestMovedPoint(G)]);
#orbsA:= StructuralCopy(Orbits(A));
#Size(A)=Size(Action(A, orbsA[1], OnPoints))*Size(Action(A, orbsA[2], OnPoints));
Pgens:=List(GeneratorsOfGroup(AutC), gen-> RestrictedPerm(gen, [1..LargestMovedPoint(G)]));
P:=Group(Pgens);
orbsP:= StructuralCopy(Orbits(P));
isfullDP:= Size(P)= Product(List([1..Length(orbsP)], x-> Size(Action(P, orbsP[x], OnPoints))));
Print("orbsPNum ", Length(orbsP), ",");
Print("isfullDP ", isfullDP, ",");
isSeparable:=true;
for gen in Pgens do
first:=true;
for orb in orbsP do
if Length(Intersection(MovedPoints(gen), orb))>0 then
if first=true then
first:=false;
else
isSeparable:=false;
Print("gen: ", gen);
break;
fi;
fi;
od;
od;
Print("isSeparable: ", isSeparable, "\n");