-
Notifications
You must be signed in to change notification settings - Fork 38
/
dataset.py
57 lines (47 loc) · 1.69 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import errno
import os
import requests
import torch
DATA_PATH = 'data'
class SifDataset:
def __init__(self, path=DATA_PATH):
self.path = path
self.train = self.load('train')
self.dev = self.load('dev')
def download(self, split, full_path):
try:
os.makedirs(self.path)
except OSError as e:
if e.errno == errno.EEXIST:
pass
else:
raise
url = "https://raw.githubusercontent.com/PrincetonML/SIF/master/data/sentiment-" + split
print('Downloading split {} from {}'.format(split, url))
r = requests.get(url, stream=True)
with open(full_path, 'wb') as f:
for chunk in r.iter_content(chunk_size=128):
f.write(chunk)
def load(self, split):
full_path = os.path.join(self.path, 'sentiment-' + split)
if not os.path.isfile(full_path):
self.download(split, full_path)
print('Loading split {} from {}'.format(split, full_path))
result = []
with open(full_path) as f:
for line in f:
sentence, label = line.split('\t')
label = int(label)
result.append((sentence, label))
return result
def preprocess_dataset(dataset, dictionary):
exs = []
labels = []
for sentence, label in dataset:
tokenized = preprocess_sentence(sentence, dictionary)
if tokenized.numel() > 0:
exs.append(tokenized)
labels.append(torch.LongTensor([label]))
return exs, labels
def preprocess_sentence(sentence, dictionary):
return torch.LongTensor([dictionary[w] for w in sentence.split() if w in dictionary])