-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
409 lines (373 loc) · 17.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
from keras.callbacks import Callback
from data import load_wiki_raw_feature_10, load_nus_feature_10, load_voc_feature_10, load_nus_mnist_feature, load_raw_nus_mnist_feature
from model import create_nus_model, create_voc_model, create_mnist_cnn_model
from MvLDAN import th_MvLDAN_test, th_MvLDAN_test_w, th_MvLDAN_cost, th_MvLDAN
import config
import numpy as np
import scipy.io as sio
def train_model(model, data, epoch_num, batch_size, out_model=None, pairwise=True, d=9, MAP=None, model_path='tmp/tmp_best2.h5'):
str_test = [0]
best_val_accuracy = [0]
best_test_accuracy = [0]
result = []
train_data = []
train_labels = []
valid_data = []
valid_labels = []
test_data = []
test_labels = []
isComputeLoss = False
# MAP = MAP # None
compute_all = False
tmp_best = model_path
best_epoch = [0]
for i in range(len(data)):
train_data.append(data[i][0][0])
train_labels.append(np.reshape(data[i][0][1], [-1, 1]))
valid_data.append(data[i][1][0])
valid_labels.append(np.reshape(data[i][1][1], [-1, 1]))
test_data.append(data[i][2][0])
test_labels.append(np.reshape(data[i][2][1], [-1, 1]))
class LossHistory(Callback):
def __init__(self, _train, _validation, _test, _batch_size=100, d=9):
self.train_data = _train[0]
self.train_labels = _train[1]
self.validate_data = _validation[0]
self.validate_labels = _validation[1]
self.test_data = _test[0]
self.test_labels = _test[1]
self.batch_size = _batch_size
self.n_view = len(self.train_data)
self.d = d
if out_model is None:
self.out_model = self.model
else:
self.out_model = out_model
self.history = {'tr_eigvals': [], 'val_eigvals': [], 'tr_acc': [], 'val_acc': []}
self.test_pred = None
self.train_pred = None
def on_train_begin(self, logs={}):
if isComputeLoss:
_train = self.out_model.predict(self.train_data, self.batch_size)
_validate = self.out_model.predict(self.validate_data, self.batch_size)
_val_result, tr_eigvals, _, W, ms = th_MvLDAN_test(_train, self.train_labels, _validate, self.validate_labels, self.d, MAP)
_train_resut = th_MvLDAN_test_w(W, ms, _train, self.train_labels, self.d, MAP)
_, val_eigvals, _, _, _ = th_MvLDAN_test(_validate, self.validate_labels, _validate, self.validate_labels, self.d, MAP)
self.history['tr_eigvals'].append(tr_eigvals)
self.history['val_eigvals'].append(val_eigvals)
self.history['tr_acc'].append(_train_resut)
self.history['val_acc'].append(_val_result)
pass
self.on_epoch_end(-1)
def on_batch_end(self, batch, logs={}):
pass
def view_result(self, _acc):
res = ''
if type(_acc) is not list:
res += ((' - mean: %.4f' % (np.sum(_acc) / (self.n_view * (self.n_view - 1)))) + ' - detail:')
for _i in range(self.n_view):
for _j in range(self.n_view):
if _i != _j:
res += ('%.4f' % _acc[_i, _j]) + ','
else:
R = [50, 'ALL']
for _k in range(len(_acc)):
res += (' R = ' + str(R[_k]) + ': ')
res += ((' - mean: %.4f' % (np.sum(_acc[_k]) / (self.n_view * (self.n_view - 1)))) + ' - detail:')
for _i in range(self.n_view):
for _j in range(self.n_view):
if _i != _j:
res += ('%.4f' % _acc[_k][_i, _j]) + ','
return res
def on_epoch_end(self, epoch, logs=None):
_train = self.out_model.predict(self.train_data, self.batch_size)
_validate = self.out_model.predict(self.validate_data, self.batch_size)
_val_result, tr_eigvals, _, W, ms = th_MvLDAN_test(_train, self.train_labels, _validate, self.validate_labels, self.d, MAP)#list(range(2, 30)))
val_eigvals_sum = np.sum(tr_eigvals[0::])
self.str_test = ''
if compute_all or np.sum(_val_result) > np.sum(best_val_accuracy[0]):
best_val_accuracy[0] = _val_result
self.train_pred = _train
self.test_pred = self.out_model.predict(self.test_data, self.batch_size)
print(' - val_sum: %.4f - val_results: %s %s - val_eigenvalues: %.4f %.4f' % (val_eigvals_sum, self.view_result(_val_result), self.str_test, tr_eigvals[0], tr_eigvals[-1]))
_val_tmp = np.concatenate(_val_result)
result.append(np.sum(_val_result) / len(_val_tmp[_val_tmp.nonzero()]))
if isComputeLoss:
_train_resut = th_MvLDAN_test_w(W, ms, _train, self.train_labels, self.d, MAP)
_, val_eigvals, _, _, _ = th_MvLDAN_test(_validate, self.validate_labels, _validate, self.validate_labels, self.d, MAP=MAP)
self.history['tr_eigvals'].append(tr_eigvals)
self.history['val_eigvals'].append(val_eigvals)
self.history['tr_acc'].append(_train_resut)
self.history['val_acc'].append(_val_result)
print('start training...........')
if pairwise is True:
history = LossHistory([train_data, train_labels], [valid_data, valid_labels], [test_data, test_labels], _batch_size=batch_size, d=d)
H = model.fit(train_data + train_labels, train_labels[0], batch_size=batch_size, epochs=epoch_num, shuffle=True, callbacks=[history], verbose=1)
if isComputeLoss:
import scipy.io as sio
history.history['tr_loss'] = H.history['loss']
sio.savemat('cnn_loss_acc_history_noisy_mnist_20.mat', history.history)
exit(0)
else:
from model import batch_generator
model.fit_generator(batch_generator(data), steps_per_epoch=batch_size, epochs=epoch_num, validation_data=batch_generator(data, 1), validation_steps=batch_size, callbacks=[LossHistory([train_data, train_labels], [valid_data, valid_labels], [test_data, test_labels], _batch_size=batch_size, d=d)])
tr = history.train_pred
te = history.test_pred
import os
import scipy.io as sio
for i in range(1, 100):
file_name = config.feature_path + '_' + str(i) + '.mat'
if not os.path.exists(file_name):
ms, W, eigvals = th_MvLDAN(tr, train_labels)
test_list = []
for v in range(len(train_labels)):
test_list.append(np.dot((te[v] - ms[0][v]) / ms[1][v], W[v][:, 0:d]))
# test_list.append(np.dot(te[v], W[v][:, 0:d]))
if len(train_labels) == 2:
sio.savemat(file_name, {'img': test_list[0], 'txt': test_list[1], 'img_lab': test_labels[0], 'txt_lab': test_labels[1]})
else:
sio.savemat(file_name, {'test': np.array(test_list), 'labels': np.array(test_labels)})
break
print('best_epoch:' + str(best_epoch[0]) + 'max mean accuracy:' + str(np.max(result)) + str(str_test[0]))
return {'valid_max': best_val_accuracy[0], 'test_result': best_test_accuracy[0]}
def pretrain(model, data, epoch_num, batch_size, out_model=None, pairwise=True, d=9):
str_test = [0]
best_val_accuracy = [0]
best_test_accuracy = [0]
result = []
train_data = []
train_labels = []
valid_data = []
valid_labels = []
test_data = []
test_labels = []
isComputeLoss = False
for i in range(len(data)):
train_data.append(data[i][0][0])
train_labels.append(np.reshape(data[i][0][1], [-1, 1]))
valid_data.append(data[i][1][0])
valid_labels.append(np.reshape(data[i][1][1], [-1, 1]))
test_data.append(data[i][2][0])
test_labels.append(np.reshape(data[i][2][1], [-1, 1]))
print('start pretraining...........')
model.fit(train_data + train_labels, train_labels[0], batch_size=batch_size, epochs=epoch_num, shuffle=True)
def train_nus(output_size=10, epoch_num=100, batch_size=100, l2=1e-5, learning_rate=1e-3, d=9):
all_data = load_nus_feature_10()
result = []
if type(all_data) is tuple:
all_data = [all_data]
input_size = all_data[0][1]
else:
_input_size = all_data[0][1]
input_size = []
for i in _input_size:
input_size.append(tuple(i.reshape([-1]).tolist()))
times = 1
if config.test_times == -1:
times = len(all_data)
for index in range(times):
# for dd in all_data:
if config.test_times == -1:
inx = index
else:
inx = config.test_times
dd = all_data[inx]
# for dd in all_data:
_all_data = dd[0]
model, predit_model = create_nus_model(input_size, output_size, l2, learning_rate)
model.summary()
print("lambda_cca1: " + str(config.lambda_cca1) + ' index: ' + str(inx))
result.append(train_model(model, _all_data, epoch_num, batch_size, predit_model, MAP=-1, d=d, model_path='tmp/nus_model.h5'))
return result
def train_voc(output_size=10, epoch_num=100, batch_size=100, l2=1e-5, learning_rate=1e-3, d=19):
# from data import load_voc_ccl_feature
all_data = load_voc_feature_10()
# all_data = load_voc_ccl_feature()
result = []
if type(all_data) is tuple:
all_data = [all_data]
input_size = all_data[0][1]
else:
_input_size = all_data[0][1]
input_size = []
for i in _input_size:
input_size.append(tuple(i.reshape([-1]).tolist()))
times = 1
if config.test_times == -1:
times = len(all_data)
for index in range(times):
# for dd in all_data:
if config.test_times == -1:
inx = index
else:
inx = config.test_times
dd = all_data[inx]
_all_data = dd[0]
model, predit_model = create_voc_model(input_size, output_size, l2, learning_rate)
model.summary()
print("lambda_cca1: " + str(config.lambda_cca1) + ' index: ' + str(inx))
result.append(train_model(model, _all_data, epoch_num, batch_size, predit_model, d=d, MAP=-1, model_path='tmp/voc_model.h5'))
return result
def train_mnist_cnn(output_size=10, epoch_num=100, batch_size=100, l2=1e-5, learning_rate=1e-3, d=9):
all_inx = sio.loadmat('./data/mnist/mnist_shuffle_inx10.mat')['mnist_shuffle_inx10']
result = []
times = 1
if config.test_times == -1:
times = len(all_inx)
for i in range(times):
# for dd in all_data:
if config.test_times == -1:
inx = i
else:
inx = config.test_times
from data import load_mnist
all_data = load_mnist(all_inx[inx, :], D=2)
if type(all_data) is tuple:
all_data = [all_data]
input_size = all_data[0][1]
else:
_input_size = all_data[0][1]
input_size = []
for _i in _input_size:
input_size.append(tuple(_i.reshape([-1]).tolist()))
dd = all_data[0]
_all_data = dd[0]
model, predit_model = create_mnist_cnn_model(input_size, output_size, l2, learning_rate)
model.summary()
# print("lambda_cca1: " + str(config.lambda_cca1))
print("lambda_cca1: " + str(config.lambda_cca1) + ' index: ' + str(inx))
result.append(train_model(model, _all_data, epoch_num, batch_size, predit_model, d=d, model_path='tmp/mnist_cnn_model.h5'))
return result
def train_mnist_cnn_lambda(output_size=10, epoch_num=100, batch_size=100, l2=1e-5, learning_rate=1e-3, d=9):
all_inx = sio.loadmat('./data/mnist/mnist_shuffle_inx10.mat')['mnist_shuffle_inx10']
result = []
times = 1
if config.test_times == -1:
times = len(all_inx)
for i in range(times):
# for dd in all_data:
if config.test_times == -1:
inx = i
else:
inx = config.test_times
from data import load_mnist
all_data = load_mnist(all_inx[inx, :], D=2)
if type(all_data) is tuple:
all_data = [all_data]
input_size = all_data[0][1]
else:
_input_size = all_data[0][1]
input_size = []
for _i in _input_size:
input_size.append(tuple(_i.reshape([-1]).tolist()))
for dd in all_data:
_all_data = dd[0]
model, predit_model = create_mnist_cnn_model(input_size, output_size, l2, learning_rate)
model.summary()
print("lambda_cca1: " + str(config.lambda_cca1) + ' index: ' + str(inx))
result.append(train_model(model, _all_data, epoch_num, batch_size, predit_model, d=d, model_path='tmp/mnist_cnn_lambda_model.h5'))
return result
def train_mnist_full(output_size=10, epoch_num=100, batch_size=100, l2=1e-5, learning_rate=1e-3, d=9):
all_inx = sio.loadmat('./data/mnist/mnist_shuffle_inx10.mat')['mnist_shuffle_inx10']
result = []
times = 1
if config.test_times == -1:
times = len(all_inx)
for i in range(times):
# for dd in all_data:
if config.test_times == -1:
inx = i
else:
inx = config.test_times
from data import load_mnist
all_data = load_mnist(all_inx[inx, :], D=1)
if type(all_data) is tuple:
all_data = [all_data]
input_size = all_data[0][1]
else:
_input_size = all_data[0][1]
input_size = []
for _i in _input_size:
input_size.append(tuple(_i.reshape([-1]).tolist()))
for dd in all_data:
_all_data = dd[0]
from model import create_mnist_full_model
model, predit_model = create_mnist_full_model(input_size, output_size, l2, learning_rate)
model.summary()
print("lambda_cca1: " + str(config.lambda_cca1) + ' index: ' + str(inx))
result.append(train_model(model, _all_data, epoch_num, batch_size, predit_model, d=d, model_path='tmp/mnist_full_model.h5'))
return result
def train_noisy_mnist_full(output_size=10, epoch_num=100, batch_size=100, l2=1e-5, learning_rate=1e-3, d=9):
result = []
for i in range(1):
from data import load_noisyMNIST
all_data = load_noisyMNIST()
if type(all_data) is tuple:
all_data = [all_data]
input_size = all_data[0][1]
else:
_input_size = all_data[0][1]
input_size = []
for i in _input_size:
input_size.append(tuple(i.reshape([-1]).tolist()))
for dd in all_data:
_all_data = dd[0]
from model import create_mnist_full_model
model, predit_model = create_mnist_full_model(input_size, output_size, l2, learning_rate)
model.summary()
print("lambda_cca1: " + str(config.lambda_cca1))
result.append(train_model(model, _all_data, epoch_num, batch_size, predit_model, d=d, model_path='tmp/noisy_mnist_full_model.h5'))
return result
def train_noisy_mnist_cnn(output_size=10, epoch_num=100, batch_size=100, l2=1e-5, learning_rate=1e-3, d=9):
result = []
for i in range(1):
from data import load_noisyMNIST
all_data = load_noisyMNIST(D=2)
if type(all_data) is tuple:
all_data = [all_data]
input_size = all_data[0][1]
else:
_input_size = all_data[0][1]
input_size = []
for i in _input_size:
input_size.append(tuple(i.reshape([-1]).tolist()))
for dd in all_data:
_all_data = dd[0]
model, predit_model = create_mnist_cnn_model(input_size, output_size, l2, learning_rate)
model.summary()
print("lambda_cca1: " + str(config.lambda_cca1))
result.append(train_model(model, _all_data, epoch_num, batch_size, predit_model, d=d, model_path='tmp/noisy_mnist_cnn_model.h5'))
return result
def train_nMSAD_CNN(output_size=10, epoch_num=100, batch_size=100, l2=1e-5, learning_rate=1e-3, d=9):
# all_inx = sio.loadmat('./data/mnist_cifar10/mnist_cifar10_shuffle_inx10.mat')['mnist_cifar10_shuffle_inx10']
result = []
from model import create_nMSAD_CNN_model
times = 1
if config.test_times == -1:
times = 10
for i in range(times):
# for dd in all_data:
if config.test_times == -1:
inx = i
else:
inx = config.test_times
# for i in range(10):
from data import load_nMSAD
all_data = load_nMSAD(inx, D=2)
if type(all_data) is tuple:
all_data = [all_data]
input_size = all_data[0][1]
else:
_input_size = all_data[0][1]
input_size = []
for _i in _input_size:
input_size.append(tuple(_i.reshape([-1]).tolist()))
# for index in range(len(all_data)):
# for dd in all_data:
dd = all_data[0]
_all_data = dd[0]
model, predit_model = create_nMSAD_CNN_model(input_size, output_size, l2, learning_rate)
model.summary()
print("lambda_cca1: " + str(config.lambda_cca1) + ' index: ' + str(inx))
result.append(train_model(model, _all_data, epoch_num, batch_size, predit_model, d=d, model_path='tmp/MNIST_spoken_cnn_model.h5'))
return result