-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathtest.py
79 lines (64 loc) · 2.82 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
from absl import app, flags, logging
from absl.flags import FLAGS
import cv2
import os
import numpy as np
import tensorflow as tf
from modules.evaluations import get_val_data, perform_val
from modules.models import ArcFaceModel
from modules.utils import set_memory_growth, load_yaml, l2_norm
flags.DEFINE_string('cfg_path', './configs/arc_res50.yaml', 'config file path')
flags.DEFINE_string('gpu', '0', 'which gpu to use')
flags.DEFINE_string('img_path', '', 'path to input image')
def main(_argv):
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu
logger = tf.get_logger()
logger.disabled = True
logger.setLevel(logging.FATAL)
set_memory_growth()
cfg = load_yaml(FLAGS.cfg_path)
model = ArcFaceModel(size=cfg['input_size'],
backbone_type=cfg['backbone_type'],
training=False)
ckpt_path = tf.train.latest_checkpoint('./checkpoints/' + cfg['sub_name'])
if ckpt_path is not None:
print("[*] load ckpt from {}".format(ckpt_path))
model.load_weights(ckpt_path)
else:
print("[*] Cannot find ckpt from {}.".format(ckpt_path))
exit()
if FLAGS.img_path:
print("[*] Encode {} to ./output_embeds.npy".format(FLAGS.img_path))
img = cv2.imread(FLAGS.img_path)
img = cv2.resize(img, (cfg['input_size'], cfg['input_size']))
img = img.astype(np.float32) / 255.
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
if len(img.shape) == 3:
img = np.expand_dims(img, 0)
embeds = l2_norm(model(img))
np.save('./output_embeds.npy', embeds)
else:
print("[*] Loading LFW, AgeDB30 and CFP-FP...")
lfw, agedb_30, cfp_fp, lfw_issame, agedb_30_issame, cfp_fp_issame = \
get_val_data(cfg['test_dataset'])
print("[*] Perform Evaluation on LFW...")
acc_lfw, best_th = perform_val(
cfg['embd_shape'], cfg['batch_size'], model, lfw, lfw_issame,
is_ccrop=cfg['is_ccrop'])
print(" acc {:.4f}, th: {:.2f}".format(acc_lfw, best_th))
print("[*] Perform Evaluation on AgeDB30...")
acc_agedb30, best_th = perform_val(
cfg['embd_shape'], cfg['batch_size'], model, agedb_30,
agedb_30_issame, is_ccrop=cfg['is_ccrop'])
print(" acc {:.4f}, th: {:.2f}".format(acc_agedb30, best_th))
print("[*] Perform Evaluation on CFP-FP...")
acc_cfp_fp, best_th = perform_val(
cfg['embd_shape'], cfg['batch_size'], model, cfp_fp, cfp_fp_issame,
is_ccrop=cfg['is_ccrop'])
print(" acc {:.4f}, th: {:.2f}".format(acc_cfp_fp, best_th))
if __name__ == '__main__':
try:
app.run(main)
except SystemExit:
pass