-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathdataset_checker.py
41 lines (30 loc) · 1.32 KB
/
dataset_checker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import time
import cv2
from absl import app, flags
from absl.flags import FLAGS
from modules.dataset import load_tfrecord_dataset
flags.DEFINE_boolean('using_bin', True, 'whether use binary file or not')
flags.DEFINE_boolean('visualization', True, 'whether visualize dataset or not')
def main(_):
if FLAGS.using_bin:
train_dataset = load_tfrecord_dataset(
'./data/DIV2K800_sub_bin.tfrecord', 16, 128, 4,
using_bin=True, using_flip=True, using_rot=False, buffer_size=10)
else:
train_dataset = load_tfrecord_dataset(
'./data/DIV2K800_sub.tfrecord', 16, 128, 4,
using_bin=False, using_flip=True, using_rot=False, buffer_size=10)
num_samples = 100
start_time = time.time()
for idx, (inputs, labels) in enumerate(train_dataset.take(num_samples)):
print("{} inputs:".format(idx), inputs.shape, "outputs:", labels.shape)
if FLAGS.visualization:
cv2.imshow('inputs', cv2.cvtColor(inputs[0].numpy(),
cv2.COLOR_RGB2BGR))
cv2.imshow('labels', cv2.cvtColor(labels[0].numpy(),
cv2.COLOR_RGB2BGR))
if cv2.waitKey(0) == ord('q'):
exit()
print("data fps: {:.2f}".format(num_samples / (time.time() - start_time)))
if __name__ == '__main__':
app.run(main)