-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathtrain_esrgan.py
executable file
·155 lines (129 loc) · 6.33 KB
/
train_esrgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from absl import app, flags, logging
from absl.flags import FLAGS
import os
import tensorflow as tf
from modules.models import RRDB_Model, DiscriminatorVGG128
from modules.lr_scheduler import MultiStepLR
from modules.losses import (PixelLoss, ContentLoss, DiscriminatorLoss,
GeneratorLoss)
from modules.utils import (load_yaml, load_dataset, ProgressBar,
set_memory_growth)
flags.DEFINE_string('cfg_path', './configs/esrgan.yaml', 'config file path')
flags.DEFINE_string('gpu', '0', 'which gpu to use')
def main(_):
# init
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu
logger = tf.get_logger()
logger.disabled = True
logger.setLevel(logging.FATAL)
set_memory_growth()
cfg = load_yaml(FLAGS.cfg_path)
# define network
generator = RRDB_Model(cfg['input_size'], cfg['ch_size'], cfg['network_G'])
generator.summary(line_length=80)
discriminator = DiscriminatorVGG128(cfg['gt_size'], cfg['ch_size'])
discriminator.summary(line_length=80)
# load dataset
train_dataset = load_dataset(cfg, 'train_dataset', shuffle=False)
# define optimizer
learning_rate_G = MultiStepLR(cfg['lr_G'], cfg['lr_steps'], cfg['lr_rate'])
learning_rate_D = MultiStepLR(cfg['lr_D'], cfg['lr_steps'], cfg['lr_rate'])
optimizer_G = tf.keras.optimizers.Adam(learning_rate=learning_rate_G,
beta_1=cfg['adam_beta1_G'],
beta_2=cfg['adam_beta2_G'])
optimizer_D = tf.keras.optimizers.Adam(learning_rate=learning_rate_D,
beta_1=cfg['adam_beta1_D'],
beta_2=cfg['adam_beta2_D'])
# define losses function
pixel_loss_fn = PixelLoss(criterion=cfg['pixel_criterion'])
fea_loss_fn = ContentLoss(criterion=cfg['feature_criterion'])
gen_loss_fn = GeneratorLoss(gan_type=cfg['gan_type'])
dis_loss_fn = DiscriminatorLoss(gan_type=cfg['gan_type'])
# load checkpoint
checkpoint_dir = './checkpoints/' + cfg['sub_name']
checkpoint = tf.train.Checkpoint(step=tf.Variable(0, name='step'),
optimizer_G=optimizer_G,
optimizer_D=optimizer_D,
model=generator,
discriminator=discriminator)
manager = tf.train.CheckpointManager(checkpoint=checkpoint,
directory=checkpoint_dir,
max_to_keep=3)
if manager.latest_checkpoint:
checkpoint.restore(manager.latest_checkpoint)
print('[*] load ckpt from {} at step {}.'.format(
manager.latest_checkpoint, checkpoint.step.numpy()))
else:
if cfg['pretrain_name'] is not None:
pretrain_dir = './checkpoints/' + cfg['pretrain_name']
if tf.train.latest_checkpoint(pretrain_dir):
checkpoint.restore(tf.train.latest_checkpoint(pretrain_dir))
checkpoint.step.assign(0)
print("[*] training from pretrain model {}.".format(
pretrain_dir))
else:
print("[*] cannot find pretrain model {}.".format(
pretrain_dir))
else:
print("[*] training from scratch.")
# define training step function
@tf.function
def train_step(lr, hr):
with tf.GradientTape(persistent=True) as tape:
sr = generator(lr, training=True)
hr_output = discriminator(hr, training=True)
sr_output = discriminator(sr, training=True)
losses_G = {}
losses_D = {}
losses_G['reg'] = tf.reduce_sum(generator.losses)
losses_D['reg'] = tf.reduce_sum(discriminator.losses)
losses_G['pixel'] = cfg['w_pixel'] * pixel_loss_fn(hr, sr)
losses_G['feature'] = cfg['w_feature'] * fea_loss_fn(hr, sr)
losses_G['gan'] = cfg['w_gan'] * gen_loss_fn(hr_output, sr_output)
losses_D['gan'] = dis_loss_fn(hr_output, sr_output)
total_loss_G = tf.add_n([l for l in losses_G.values()])
total_loss_D = tf.add_n([l for l in losses_D.values()])
grads_G = tape.gradient(
total_loss_G, generator.trainable_variables)
grads_D = tape.gradient(
total_loss_D, discriminator.trainable_variables)
optimizer_G.apply_gradients(
zip(grads_G, generator.trainable_variables))
optimizer_D.apply_gradients(
zip(grads_D, discriminator.trainable_variables))
return total_loss_G, total_loss_D, losses_G, losses_D
# training loop
summary_writer = tf.summary.create_file_writer(
'./logs/' + cfg['sub_name'])
prog_bar = ProgressBar(cfg['niter'], checkpoint.step.numpy())
remain_steps = max(cfg['niter'] - checkpoint.step.numpy(), 0)
for lr, hr in train_dataset.take(remain_steps):
checkpoint.step.assign_add(1)
steps = checkpoint.step.numpy()
total_loss_G, total_loss_D, losses_G, losses_D = train_step(lr, hr)
prog_bar.update(
"loss_G={:.4f}, loss_D={:.4f}, lr_G={:.1e}, lr_D={:.1e}".format(
total_loss_G.numpy(), total_loss_D.numpy(),
optimizer_G.lr(steps).numpy(), optimizer_D.lr(steps).numpy()))
if steps % 10 == 0:
with summary_writer.as_default():
tf.summary.scalar(
'loss_G/total_loss', total_loss_G, step=steps)
tf.summary.scalar(
'loss_D/total_loss', total_loss_D, step=steps)
for k, l in losses_G.items():
tf.summary.scalar('loss_G/{}'.format(k), l, step=steps)
for k, l in losses_D.items():
tf.summary.scalar('loss_D/{}'.format(k), l, step=steps)
tf.summary.scalar(
'learning_rate_G', optimizer_G.lr(steps), step=steps)
tf.summary.scalar(
'learning_rate_D', optimizer_D.lr(steps), step=steps)
if steps % cfg['save_steps'] == 0:
manager.save()
print("\n[*] save ckpt file at {}".format(
manager.latest_checkpoint))
print("\n [*] training done!")
if __name__ == '__main__':
app.run(main)