-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathtrain_psnr.py
109 lines (84 loc) · 3.73 KB
/
train_psnr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
from absl import app, flags, logging
from absl.flags import FLAGS
import os
import tensorflow as tf
from modules.models import RRDB_Model
from modules.lr_scheduler import MultiStepLR
from modules.losses import PixelLoss
from modules.utils import (load_yaml, load_dataset, ProgressBar,
set_memory_growth)
flags.DEFINE_string('cfg_path', './configs/psnr.yaml', 'config file path')
flags.DEFINE_string('gpu', '0', 'which gpu to use')
def main(_):
# init
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu
logger = tf.get_logger()
logger.disabled = True
logger.setLevel(logging.FATAL)
set_memory_growth()
cfg = load_yaml(FLAGS.cfg_path)
# define network
model = RRDB_Model(cfg['input_size'], cfg['ch_size'], cfg['network_G'])
model.summary(line_length=80)
# load dataset
train_dataset = load_dataset(cfg, 'train_dataset', shuffle=True)
# define optimizer
learning_rate = MultiStepLR(cfg['lr'], cfg['lr_steps'], cfg['lr_rate'])
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate,
beta_1=cfg['adam_beta1_G'],
beta_2=cfg['adam_beta2_G'])
# define losses function
pixel_loss_fn = PixelLoss(criterion=cfg['pixel_criterion'])
# load checkpoint
checkpoint_dir = './checkpoints/' + cfg['sub_name']
checkpoint = tf.train.Checkpoint(step=tf.Variable(0, name='step'),
optimizer=optimizer,
model=model)
manager = tf.train.CheckpointManager(checkpoint=checkpoint,
directory=checkpoint_dir,
max_to_keep=3)
if manager.latest_checkpoint:
checkpoint.restore(manager.latest_checkpoint)
print('[*] load ckpt from {} at step {}.'.format(
manager.latest_checkpoint, checkpoint.step.numpy()))
else:
print("[*] training from scratch.")
# define training step function
@tf.function
def train_step(lr, hr):
with tf.GradientTape() as tape:
sr = model(lr, training=True)
losses = {}
losses['reg'] = tf.reduce_sum(model.losses)
losses['pixel'] = cfg['w_pixel'] * pixel_loss_fn(hr, sr)
total_loss = tf.add_n([l for l in losses.values()])
grads = tape.gradient(total_loss, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
return total_loss, losses
# training loop
summary_writer = tf.summary.create_file_writer(
'./logs/' + cfg['sub_name'])
prog_bar = ProgressBar(cfg['niter'], checkpoint.step.numpy())
remain_steps = max(cfg['niter'] - checkpoint.step.numpy(), 0)
for lr, hr in train_dataset.take(remain_steps):
checkpoint.step.assign_add(1)
steps = checkpoint.step.numpy()
total_loss, losses = train_step(lr, hr)
prog_bar.update("loss={:.4f}, lr={:.1e}".format(
total_loss.numpy(), optimizer.lr(steps).numpy()))
if steps % 10 == 0:
with summary_writer.as_default():
tf.summary.scalar(
'loss/total_loss', total_loss, step=steps)
for k, l in losses.items():
tf.summary.scalar('loss/{}'.format(k), l, step=steps)
tf.summary.scalar(
'learning_rate', optimizer.lr(steps), step=steps)
if steps % cfg['save_steps'] == 0:
manager.save()
print("\n[*] save ckpt file at {}".format(
manager.latest_checkpoint))
print("\n[*] training done!")
if __name__ == '__main__':
app.run(main)