-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
50 lines (40 loc) · 1.62 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from dotenv import load_dotenv
import os
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains.question_answering import load_qa_chain
from langchain.llms import OpenAI
from langchain.callbacks import get_openai_callback
def main():
load_dotenv()
# print(os.getenv("OPENAI_API_KEY"))
st.set_page_config(page_title="Ask your PDF")
st.header("Ask your PDF")
pdf = st.file_uploader("Upload your PDF", type='pdf')
if pdf is not None:
pdf_reader = PdfReader(pdf)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
#split into chunks
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len)
chunks = text_splitter.split_text(text)
# convert to embeddings
embeddings = OpenAIEmbeddings()
knowledge_base = FAISS.from_texts(chunks, embeddings)
user_question = st.text_input("Ask a question about your pdf")
if user_question:
doocs = knowledge_base.similarity_search(user_question)
# st.write(doocs)
llm = OpenAI()
chain = load_qa_chain(llm, chain_type='stuff')
# monitor how much money spent
with get_openai_callback() as cb:
response = chain.run(input_documents=doocs, question=user_question)
print(cb)
st.write(response)
if __name__ == '__main__':
main()