Skip to content

Latest commit

 

History

History
191 lines (141 loc) · 11.1 KB

README.md

File metadata and controls

191 lines (141 loc) · 11.1 KB

Introduction

Nowadays, the training of Deep Learning models is fragmented and unified. When AI engineers face up with one specific task, the common way was to find a repo and reimplement them. Thus, it is really hard for them to speed up the implementation of a big project in which requires a continuous try-end-error process to find the best model. general_backbone is launched to facilitate for implementation of deep neural-network backbones, data augmentations, optimizers, and learning schedulers that all in one package. Finally, you can quick-win the training process. Below are these supported sectors in the current version:

  • backbones
  • loss functions
  • augumentation styles
  • optimizers
  • schedulers
  • data types
  • visualizations

Installation

Refer to docs/installation.md for installion of general_backbone package.

Model backbone

Currently, general_backbone supports more than 70 type of resnet models such as: resnet18, resnet34, resnet50, resnet101, resnet152, resnext50.

All models is supported can be found in general_backbone.list_models() function:

import general_backbone
general_backbone.list_models()

Results

{'resnet': ['resnet18', 'resnet18d', 'resnet34', 'resnet34d', 'resnet26', 'resnet26d', 'resnet26t', 'resnet50', 'resnet50d', 'resnet50t', 'resnet101', 'resnet101d', 'resnet152', 'resnet152d', 'resnet200', 'resnet200d', 'tv_resnet34', 'tv_resnet50', 'tv_resnet101', 'tv_resnet152', 'wide_resnet50_2', 'wide_resnet101_2', 'resnext50_32x4d', 'resnext50d_32x4d', 'resnext101_32x4d', 'resnext101_32x8d', 'resnext101_64x4d', 'tv_resnext50_32x4d', 'ig_resnext101_32x8d', 'ig_resnext101_32x16d', 'ig_resnext101_32x32d', 'ig_resnext101_32x48d', 'ssl_resnet18', 'ssl_resnet50', 'ssl_resnext50_32x4d', 'ssl_resnext101_32x4d', 'ssl_resnext101_32x8d', 'ssl_resnext101_32x16d', 'swsl_resnet18', 'swsl_resnet50', 'swsl_resnext50_32x4d', 'swsl_resnext101_32x4d', 'swsl_resnext101_32x8d', 'swsl_resnext101_32x16d', 'seresnet18', 'seresnet34', 'seresnet50', 'seresnet50t', 'seresnet101', 'seresnet152', 'seresnet152d', 'seresnet200d', 'seresnet269d', 'seresnext26d_32x4d', 'seresnext26t_32x4d', 'seresnext50_32x4d', 'seresnext101_32x4d', 'seresnext101_32x8d', 'senet154', 'ecaresnet26t', 'ecaresnetlight', 'ecaresnet50d', 'ecaresnet50d_pruned', 'ecaresnet50t', 'ecaresnet101d', 'ecaresnet101d_pruned', 'ecaresnet200d', 'ecaresnet269d', 'ecaresnext26t_32x4d', 'ecaresnext50t_32x4d', 'resnetblur18', 'resnetblur50', 'resnetrs50', 'resnetrs101', 'resnetrs152', 'resnetrs200', 'resnetrs270', 'resnetrs350', 'resnetrs420']}

To select your backbone type, you set model=resnet50 in train_config of your config file. An example config file general_backbone/configs/image_clf_config.py.

Dataset

A toy dataset is provided at toydata for your test training. It has a structure organized as below:

toydata/
└── image_classification
    ├── test
    │   ├── cat
    │   └── dog
    └── train
        ├── cat
        └── dog

Inside each folder cat and dog is the images. If you want to add a new class, you just need to create a new folder with the folder's name is label name inside train and test folder.

Data Augmentation

general_backbone package support many augmentations style for training. It is efficient and important to improve model accuracy. Some of common augumentations is below:

Augumentation Style Parameters Description
Pixel-level transforms
Blur {'blur_limit':7, 'always_apply':False, 'p':0.5} Blur the input image using a random-sized kernel
GaussNoise {'var_limit':(10.0, 50.0), 'mean':0, 'per_channel':True, 'always_apply':False, 'p':0.5} Apply gaussian noise to the input image
GaussianBlur {'blur_limit':(3, 7), 'sigma_limit':0, 'always_apply':False, 'p':0.5} Blur the input image using a Gaussian filter with a random kernel size
GlassBlur {'sigma': 0.7, 'max_delta':4, 'iterations':2, 'always_apply':False, 'mode':'fast', 'p':0.5} Apply glass noise to the input image
HueSaturationValue {'hue_shift_limit':20, 'sat_shift_limit':30, 'val_shift_limit':20, 'always_apply':False, 'p':0.5} Randomly change hue, saturation and value of the input image
MedianBlur {'blur_limit':7, 'always_apply':False, 'p':0.5} Blur the input image using a median filter with a random aperture linear size
RGBShift {'r_shift_limit': 15, 'g_shift_limit': 15, 'b_shift_limit': 15, 'p': 0.5} Randomly shift values for each channel of the input RGB image.
Normalize {'mean':(0.485, 0.456, 0.406), 'std':(0.229, 0.224, 0.225)} Normalization is applied by the formula: img = (img - mean * max_pixel_value) / (std * max_pixel_value)
Spatial-level transforms
RandomCrop {'height':128, 'width':128} Crop a random part of the input
VerticalFlip {'p': 0.5} Flip the input vertically around the x-axis
ShiftScaleRotate {'shift_limit':0.05, 'scale_limit':0.05, 'rotate_limit':15, 'p':0.5} Randomly apply affine transforms: translate, scale and rotate the input
RandomBrightnessContrast {'brightness_limit':0.2, 'contrast_limit':0.2, 'brightness_by_max':True, 'always_apply':False,'p': 0.5} Randomly change brightness and contrast of the input image

Augumentation is configured in the configuration file general_backbone/configs/image_clf_config.py:

data_conf = dict(
    dict_transform = dict(
        SmallestMaxSize={'max_size': 160},
        ShiftScaleRotate={'shift_limit':0.05, 'scale_limit':0.05, 'rotate_limit':15, 'p':0.5},
        RandomCrop={'height':128, 'width':128},
        RGBShift={'r_shift_limit': 15, 'g_shift_limit': 15, 'b_shift_limit': 15, 'p': 0.5},
        RandomBrightnessContrast={'p': 0.5},
        Normalize={'mean':(0.485, 0.456, 0.406), 'std':(0.229, 0.224, 0.225)},
        ToTensorV2={'always_apply':True}
    )
)

You can add a new transformation step in data_conf['dict_transform'] and they are transformed in order from top-down. You can also debug your transformation by setup debug=True:

from general_backbone.data import AugmentationDataset
augdataset = AugmentationDataset(data_dir='toydata/image_classification',
                            name_split='train',
                            config_file = 'general_backbone/configs/image_clf_config.py', 
                            dict_transform=None, 
                            input_size=(256, 256), 
                            debug=True, 
                            dir_debug = 'tmp/alb_img_debug', 
                            class_2_idx=None)

for i in range(50):
    img, label = augdataset.__getitem__(i)

In default, the augmentation images output is saved in tmp/alb_img_debug to you review before train your models. the code tests augmentation image is available in debug/transform_debug.py:

conda activate gen_backbone
python debug/transform_debug.py

Train model

To train model, you run file tools/train.py. There are variaty of config for your training such as --model, --batch_size, --opt, --loss, --sched. We supply to you a standard configuration file to train your model through --config. general_backbone/configs/image_clf_config.py is for image classification task. You can change value inside this file or add new parameter as you want but without changing the name and structure of file.

python3 tools/train.py --config general_backbone/configs/image_clf_config.py

Results:

Model resnet50 created, param count:25557032
Train: 0 [   0/33 (  0%)]  Loss: 8.863 (8.86)  Time: 1.663s,    9.62/s  (1.663s,    9.62/s)  LR: 5.000e-04  Data: 0.460 (0.460)
Train: 0 [  32/33 (100%)]  Loss: 1.336 (4.00)  Time: 0.934s,    8.57/s  (0.218s,   36.68/s)  LR: 5.000e-04  Data: 0.000 (0.014)
Test: [   0/29]  Time: 0.560 (0.560)  Loss:  0.6912 (0.6912)  Acc@1: 87.5000 (87.5000)  Acc@5: 100.0000 (100.0000)
Test: [  29/29]  Time: 0.041 (0.064)  Loss:  0.5951 (0.5882)  Acc@1: 81.2500 (87.5000)  Acc@5: 100.0000 (99.3750)
Train: 1 [   0/33 (  0%)]  Loss: 0.5741 (0.574)  Time: 0.645s,   24.82/s  (0.645s,   24.82/s)  LR: 5.000e-04  Data: 0.477 (0.477)
Train: 1 [  32/33 (100%)]  Loss: 0.5411 (0.313)  Time: 0.089s,   90.32/s  (0.166s,   48.17/s)  LR: 5.000e-04  Data: 0.000 (0.016)
Test: [   0/29]  Time: 0.537 (0.537)  Loss:  0.3071 (0.3071)  Acc@1: 87.5000 (87.5000)  Acc@5: 100.0000 (100.0000)
Test: [  29/29]  Time: 0.043 (0.066)  Loss:  0.1036 (0.1876)  Acc@1: 100.0000 (93.9583)  Acc@5: 100.0000 (100.0000)

Table of config parameters is in training.

Your model checkpoint and log are saved in the same path of --output directory. A tensorboard visualization is created in order to facilitate manage and control training process. As default, folder of tensorboard is runs that insides --output. The loss, accuracy, learning rate and batch time on both train and test are logged:

tensorboard --logdir checkpoint/resnet50/20211023-092651-resnet50-224/runs/

Inference

To inference model, you can pass relevant values to --img, --config and --initial-checkpoint.

python tools/inference.py --img demo/cat0.jpg --config general_backbone/configs/image_clf_config.py --initial-checkpoint checkpoint.pth.tar

TODO

Packages reference:

There are many open sources package we refered to build up general_backbone:

  • timm: PyTorch Image Models (timm) is a collection of image models, layers, utilities, optimizers, schedulers, data-loaders / augmentations, and reference training / validation scripts that aim to pull together a wide variety of SOTA models with ability to reproduce ImageNet training results.

  • albumentations: is a Python library for image augmentation.

  • mmcv: MMCV is a foundational library for computer vision research and supports many research projects.

Citation

If you find this project is useful in your reasearch, kindly consider cite:

@article{genearal_backbone,
    title={GeneralBackbone:  A handy package for implementing Deep Learning Backbone},
    author={khanhphamdinh},
    email= {phamdinhkhanh.tkt53.neu@gmail.com},
    year={2021}
}