Nowadays, the training of Deep Learning models is fragmented and unified. When AI engineers face up with one specific task, the common way was to find a repo and reimplement them. Thus, it is really hard for them to speed up the implementation of a big project in which requires a continuous try-end-error process to find the best model. general_backbone
is launched to facilitate for implementation of deep neural-network backbones, data augmentations, optimizers, and learning schedulers that all in one package. Finally, you can quick-win the training process. Below are these supported sectors in the current version:
- backbones
- loss functions
- augumentation styles
- optimizers
- schedulers
- data types
- visualizations
Refer to docs/installation.md for installion of general_backbone
package.
Currently, general_backbone
supports more than 70 type of resnet models such as: resnet18, resnet34, resnet50, resnet101, resnet152, resnext50
.
All models is supported can be found in general_backbone.list_models()
function:
import general_backbone
general_backbone.list_models()
Results
{'resnet': ['resnet18', 'resnet18d', 'resnet34', 'resnet34d', 'resnet26', 'resnet26d', 'resnet26t', 'resnet50', 'resnet50d', 'resnet50t', 'resnet101', 'resnet101d', 'resnet152', 'resnet152d', 'resnet200', 'resnet200d', 'tv_resnet34', 'tv_resnet50', 'tv_resnet101', 'tv_resnet152', 'wide_resnet50_2', 'wide_resnet101_2', 'resnext50_32x4d', 'resnext50d_32x4d', 'resnext101_32x4d', 'resnext101_32x8d', 'resnext101_64x4d', 'tv_resnext50_32x4d', 'ig_resnext101_32x8d', 'ig_resnext101_32x16d', 'ig_resnext101_32x32d', 'ig_resnext101_32x48d', 'ssl_resnet18', 'ssl_resnet50', 'ssl_resnext50_32x4d', 'ssl_resnext101_32x4d', 'ssl_resnext101_32x8d', 'ssl_resnext101_32x16d', 'swsl_resnet18', 'swsl_resnet50', 'swsl_resnext50_32x4d', 'swsl_resnext101_32x4d', 'swsl_resnext101_32x8d', 'swsl_resnext101_32x16d', 'seresnet18', 'seresnet34', 'seresnet50', 'seresnet50t', 'seresnet101', 'seresnet152', 'seresnet152d', 'seresnet200d', 'seresnet269d', 'seresnext26d_32x4d', 'seresnext26t_32x4d', 'seresnext50_32x4d', 'seresnext101_32x4d', 'seresnext101_32x8d', 'senet154', 'ecaresnet26t', 'ecaresnetlight', 'ecaresnet50d', 'ecaresnet50d_pruned', 'ecaresnet50t', 'ecaresnet101d', 'ecaresnet101d_pruned', 'ecaresnet200d', 'ecaresnet269d', 'ecaresnext26t_32x4d', 'ecaresnext50t_32x4d', 'resnetblur18', 'resnetblur50', 'resnetrs50', 'resnetrs101', 'resnetrs152', 'resnetrs200', 'resnetrs270', 'resnetrs350', 'resnetrs420']}
To select your backbone type, you set model=resnet50
in train_config of your config file. An example config file general_backbone/configs/image_clf_config.py.
A toy dataset is provided at toydata
for your test training. It has a structure organized as below:
toydata/
└── image_classification
├── test
│ ├── cat
│ └── dog
└── train
├── cat
└── dog
Inside each folder cat and dog is the images. If you want to add a new class, you just need to create a new folder with the folder's name is label name inside train
and test
folder.
general_backbone
package support many augmentations style for training. It is efficient and important to improve model accuracy. Some of common augumentations is below:
Augumentation Style | Parameters | Description |
---|---|---|
Pixel-level transforms | ||
Blur | {'blur_limit':7, 'always_apply':False, 'p':0.5} |
Blur the input image using a random-sized kernel |
GaussNoise | {'var_limit':(10.0, 50.0), 'mean':0, 'per_channel':True, 'always_apply':False, 'p':0.5} |
Apply gaussian noise to the input image |
GaussianBlur | {'blur_limit':(3, 7), 'sigma_limit':0, 'always_apply':False, 'p':0.5} |
Blur the input image using a Gaussian filter with a random kernel size |
GlassBlur | {'sigma': 0.7, 'max_delta':4, 'iterations':2, 'always_apply':False, 'mode':'fast', 'p':0.5} |
Apply glass noise to the input image |
HueSaturationValue | {'hue_shift_limit':20, 'sat_shift_limit':30, 'val_shift_limit':20, 'always_apply':False, 'p':0.5} |
Randomly change hue, saturation and value of the input image |
MedianBlur | {'blur_limit':7, 'always_apply':False, 'p':0.5} |
Blur the input image using a median filter with a random aperture linear size |
RGBShift | {'r_shift_limit': 15, 'g_shift_limit': 15, 'b_shift_limit': 15, 'p': 0.5} |
Randomly shift values for each channel of the input RGB image. |
Normalize | {'mean':(0.485, 0.456, 0.406), 'std':(0.229, 0.224, 0.225)} |
Normalization is applied by the formula: img = (img - mean * max_pixel_value) / (std * max_pixel_value) |
Spatial-level transforms | ||
RandomCrop | {'height':128, 'width':128} |
Crop a random part of the input |
VerticalFlip | {'p': 0.5} |
Flip the input vertically around the x-axis |
ShiftScaleRotate | {'shift_limit':0.05, 'scale_limit':0.05, 'rotate_limit':15, 'p':0.5} |
Randomly apply affine transforms: translate, scale and rotate the input |
RandomBrightnessContrast | {'brightness_limit':0.2, 'contrast_limit':0.2, 'brightness_by_max':True, 'always_apply':False,'p': 0.5} |
Randomly change brightness and contrast of the input image |
Augumentation is configured in the configuration file general_backbone/configs/image_clf_config.py:
data_conf = dict(
dict_transform = dict(
SmallestMaxSize={'max_size': 160},
ShiftScaleRotate={'shift_limit':0.05, 'scale_limit':0.05, 'rotate_limit':15, 'p':0.5},
RandomCrop={'height':128, 'width':128},
RGBShift={'r_shift_limit': 15, 'g_shift_limit': 15, 'b_shift_limit': 15, 'p': 0.5},
RandomBrightnessContrast={'p': 0.5},
Normalize={'mean':(0.485, 0.456, 0.406), 'std':(0.229, 0.224, 0.225)},
ToTensorV2={'always_apply':True}
)
)
You can add a new transformation step in data_conf['dict_transform']
and they are transformed in order from top-down. You can also debug your transformation by setup debug=True
:
from general_backbone.data import AugmentationDataset
augdataset = AugmentationDataset(data_dir='toydata/image_classification',
name_split='train',
config_file = 'general_backbone/configs/image_clf_config.py',
dict_transform=None,
input_size=(256, 256),
debug=True,
dir_debug = 'tmp/alb_img_debug',
class_2_idx=None)
for i in range(50):
img, label = augdataset.__getitem__(i)
In default, the augmentation images output is saved in tmp/alb_img_debug
to you review before train your models. the code tests augmentation image is available in debug/transform_debug.py:
conda activate gen_backbone
python debug/transform_debug.py
To train model, you run file tools/train.py
. There are variaty of config for your training such as --model, --batch_size, --opt, --loss, --sched
. We supply to you a standard configuration file to train your model through --config
. general_backbone/configs/image_clf_config.py is for image classification task. You can change value inside this file or add new parameter as you want but without changing the name and structure of file.
python3 tools/train.py --config general_backbone/configs/image_clf_config.py
Results:
Model resnet50 created, param count:25557032
Train: 0 [ 0/33 ( 0%)] Loss: 8.863 (8.86) Time: 1.663s, 9.62/s (1.663s, 9.62/s) LR: 5.000e-04 Data: 0.460 (0.460)
Train: 0 [ 32/33 (100%)] Loss: 1.336 (4.00) Time: 0.934s, 8.57/s (0.218s, 36.68/s) LR: 5.000e-04 Data: 0.000 (0.014)
Test: [ 0/29] Time: 0.560 (0.560) Loss: 0.6912 (0.6912) Acc@1: 87.5000 (87.5000) Acc@5: 100.0000 (100.0000)
Test: [ 29/29] Time: 0.041 (0.064) Loss: 0.5951 (0.5882) Acc@1: 81.2500 (87.5000) Acc@5: 100.0000 (99.3750)
Train: 1 [ 0/33 ( 0%)] Loss: 0.5741 (0.574) Time: 0.645s, 24.82/s (0.645s, 24.82/s) LR: 5.000e-04 Data: 0.477 (0.477)
Train: 1 [ 32/33 (100%)] Loss: 0.5411 (0.313) Time: 0.089s, 90.32/s (0.166s, 48.17/s) LR: 5.000e-04 Data: 0.000 (0.016)
Test: [ 0/29] Time: 0.537 (0.537) Loss: 0.3071 (0.3071) Acc@1: 87.5000 (87.5000) Acc@5: 100.0000 (100.0000)
Test: [ 29/29] Time: 0.043 (0.066) Loss: 0.1036 (0.1876) Acc@1: 100.0000 (93.9583) Acc@5: 100.0000 (100.0000)
Table of config parameters is in training.
Your model checkpoint and log are saved in the same path of --output
directory. A tensorboard visualization is created in order to facilitate manage and control training process. As default, folder of tensorboard is runs
that insides --output
. The loss, accuracy, learning rate
and batch time
on both train and test are logged:
tensorboard --logdir checkpoint/resnet50/20211023-092651-resnet50-224/runs/
To inference model, you can pass relevant values to --img
, --config
and --initial-checkpoint
.
python tools/inference.py --img demo/cat0.jpg --config general_backbone/configs/image_clf_config.py --initial-checkpoint checkpoint.pth.tar
- code setup.py
- conda virtual environment setup
- Introduce group of CNN models support
- Visualization training results
- [] Table ranking model performances.
- Support new type of Datasets: You can change the augmentation styles:
- [] New loss function:
- Focal Loss function; KL divergence.
- references:
There are many open sources package we refered to build up general_backbone
:
-
timm: PyTorch Image Models (timm) is a collection of image models, layers, utilities, optimizers, schedulers, data-loaders / augmentations, and reference training / validation scripts that aim to pull together a wide variety of SOTA models with ability to reproduce ImageNet training results.
-
albumentations: is a Python library for image augmentation.
-
mmcv: MMCV is a foundational library for computer vision research and supports many research projects.
If you find this project is useful in your reasearch, kindly consider cite:
@article{genearal_backbone,
title={GeneralBackbone: A handy package for implementing Deep Learning Backbone},
author={khanhphamdinh},
email= {phamdinhkhanh.tkt53.neu@gmail.com},
year={2021}
}