Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

UnboundLocalError: local variable 'h' referenced before assignment #14

Closed
olefirenko opened this issue Mar 31, 2024 · 5 comments
Closed

Comments

@olefirenko
Copy link

Thank you for amazing upscaler.

Sometimes I am getting this error.

Running prediction
[Tiled Diffusion] upscaling image with 4x-UltraSharp...
[Tiled Diffusion] ControlNet found, support is enabled.
2024-03-31 06:48:41,693 - ControlNet - �[0;32mINFO�[0m - unit_separate = False, style_align = False
2024-03-31 06:48:41,694 - ControlNet - �[0;32mINFO�[0m - Loading model from cache: control_v11f1e_sd15_tile
2024-03-31 06:48:41,717 - ControlNet - �[0;32mINFO�[0m - Using preprocessor: tile_resample
2024-03-31 06:48:41,717 - ControlNet - �[0;32mINFO�[0m - preprocessor resolution = 2400
2024-03-31 06:48:41,860 - ControlNet - �[0;32mINFO�[0m - ControlNet Hooked - Time = 0.17113852500915527
MultiDiffusion hooked into 'DPM++ 3M SDE Karras' sampler, Tile size: 144x112, Tile count: 12, Batch size: 6, Tile batches: 2 (ext: ContrlNet)
[Tiled VAE]: input_size: torch.Size([1, 3, 2400, 3200]), tile_size: 3072, padding: 32
[Tiled VAE]: split to 1x2 = 2 tiles. Optimal tile size 1568x2336, original tile size 3072x3072
[Tiled VAE]: Fast mode enabled, estimating group norm parameters on 3072 x 2304 image
MultiDiffusion Sampling:   0%|          | 0/20 [00:00<?, ?it/s]
[Tiled VAE]: Executing Encoder Task Queue:   0%|          | 0/182 [00:00<?, ?it/s]�[A
[Tiled VAE]: Executing Encoder Task Queue:  10%|█         | 19/182 [00:00<00:03, 46.32it/s]�[A
[Tiled VAE]: Executing Encoder Task Queue:  21%|██        | 38/182 [00:00<00:03, 45.68it/s]�[A
[Tiled VAE]: Executing Encoder Task Queue:  24%|██▎       | 43/182 [00:01<00:03, 35.46it/s]�[A
[Tiled VAE]: Executing Encoder Task Queue:  26%|██▋       | 48/182 [00:01<00:03, 37.12it/s]�[A
[Tiled VAE]: Executing Encoder Task Queue:  29%|██▊       | 52/182 [00:01<00:06, 20.83it/s]�[A
[Tiled VAE]: Executing Encoder Task Queue:  30%|███       | 55/182 [00:02<00:07, 16.42it/s]�[A
[Tiled VAE]: Executing Encoder Task Queue:  32%|███▏      | 58/182 [00:02<00:08, 14.34it/s]�[A
[Tiled VAE]: Executing Encoder Task Queue:  35%|███▌      | 64/182 [00:02<00:06, 18.53it/s]�[A
[Tiled VAE]: Executing Encoder Task Queue:  38%|███▊      | 70/182 [00:02<00:05, 21.99it/s]�[A
[Tiled VAE]: Executing Encoder Task Queue:  40%|████      | 73/182 [00:02<00:05, 21.19it/s]�[A
[Tiled VAE]: Executing Encoder Task Queue:  42%|████▏     | 76/182 [00:03<00:04, 21.22it/s]�[A
[Tiled VAE]: Executing Encoder Task Queue:  46%|████▌     | 83/182 [00:03<00:03, 26.72it/s]�[A
[Tiled VAE]: Executing Encoder Task Queue:  47%|████▋     | 86/182 [00:03<00:03, 24.86it/s]�[A
[Tiled VAE]: Executing Encoder Task Queue:  49%|████▉     | 89/182 [00:03<00:04, 21.93it/s]�[A
[Tiled VAE]: Executing Encoder Task Queue:  51%|█████     | 92/182 [00:03<00:04, 21.15it/s]�[A
[Tiled VAE]: Executing Encoder Task Queue:  55%|█████▌    | 101/182 [00:03<00:02, 33.76it/s]�[A
[Tiled VAE]: Executing Encoder Task Queue:  64%|██████▍   | 117/182 [00:03<00:01, 60.74it/s]�[A
[Tiled VAE]: Executing Encoder Task Queue:  82%|████████▏ | 149/182 [00:04<00:00, 121.39it/s]�[A
[Tiled VAE]: Executing Encoder Task Queue:  90%|█████████ | 164/182 [00:04<00:00, 94.79it/s] �[A
[Tiled VAE]: Executing Encoder Task Queue: 100%|██████████| 182/182 [00:04<00:00, 41.48it/s]
[Tiled VAE]: Done in 5.098s, max VRAM alloc 17733.351 MB
  0%|          | 0/1 [00:00<?, ?it/s]�[A
MultiDiffusion Sampling:   5%|▌         | 1/20 [00:06<02:06,  6.66s/it]
0%|          | 0/1 [00:04<?, ?it/s]
Total progress:   0%|          | 0/1 [00:00<?, ?it/s]�[A
Total progress: 100%|██████████| 1/1 [00:00<00:00,  1.82it/s]�[A
Total progress: 100%|██████████| 1/1 [00:00<00:00,  1.82it/s]
Traceback (most recent call last):
File "/root/.pyenv/versions/3.10.4/lib/python3.10/site-packages/cog/server/worker.py", line 217, in _predict
result = predict(**payload)
File "/src/predict.py", line 234, in predict
resp = self.api.img2imgapi(req)
File "/src/modules/api/api.py", line 445, in img2imgapi
processed = process_images(p)
File "/src/modules/processing.py", line 734, in process_images
res = process_images_inner(p)
File "/src/extensions/sd-webui-controlnet/scripts/batch_hijack.py", line 41, in processing_process_images_hijack
return getattr(processing, '__controlnet_original_process_images_inner')(p, *args, **kwargs)
File "/src/modules/processing.py", line 869, in process_images_inner
samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts)
File "/src/extensions/sd-webui-controlnet/scripts/hook.py", line 438, in process_sample
return process.sample_before_CN_hack(*args, **kwargs)
File "/src/modules/processing.py", line 1528, in sample
samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
File "/src/modules/sd_samplers_kdiffusion.py", line 188, in sample_img2img
samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
File "/src/modules/sd_samplers_common.py", line 261, in launch_sampling
return func()
File "/src/modules/sd_samplers_kdiffusion.py", line 188, in <lambda>
samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
File "/root/.pyenv/versions/3.10.4/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "/src/repositories/k-diffusion/k_diffusion/sampling.py", line 701, in sample_dpmpp_3m_sde
h_1, h_2 = h, h_1
UnboundLocalError: local variable 'h' referenced before assignment
@philz1337x
Copy link
Owner

Are you using the official replicate model or something self hosted?
Did you tried another input image?

@Alexandr-git-bot
Copy link

I have the same problem, I changed the original image, but it still gives an error.

@Nikitosina
Copy link

For me, this happens when I set creativity parameter to 0

@philz1337x
Copy link
Owner

you can't set

For me, this happens when I set creativity parameter to 0

You can't set creativity to 0. You need to choose a value >0

@bxclib2
Copy link

bxclib2 commented Jan 4, 2025

I also get it when i set it to 0.05.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

5 participants