diff --git a/core/constants.py b/core/constants.py index ae4e28f..76dab46 100644 --- a/core/constants.py +++ b/core/constants.py @@ -100,6 +100,9 @@ 'TIME UNITS' MINUTES_HOUR = 60 # [min/h] Number of minutes in one hour +MINUTES_DAY = 60*24 # [min/day] Number of minutes in one day +MINUTES_WEEK = 60*24*7 # [min/week] Number of minutes in one week +MINUTES_MONTH = 60*24*30 # [min/month] Number of minutes in one month HOURS_YEAR = 8760 # [h/year] Number of hours in one year MINUTES_YEAR = MINUTES_HOUR*HOURS_YEAR # [min/year] Number of minutes in one year diff --git a/techs/electrolyzer.py b/techs/electrolyzer.py index 3ce5bba..d234aaa 100644 --- a/techs/electrolyzer.py +++ b/techs/electrolyzer.py @@ -3,6 +3,7 @@ import numpy as np from sklearn.linear_model import LinearRegression from numpy import log as ln +import math import os import sys sys.path.append(os.path.abspath(os.path.join(os.getcwd(),os.path.pardir))) # temorarily adding constants module path @@ -43,6 +44,8 @@ def __init__(self,parameters,timestep_number,timestep=False): self.min_load = parameters.get('minimum_load', 0) # if 'minimum load' is not specified as model input, the default value of 0 is selected by default self.ageing = parameters.get('ageing', False) # if 'ageing' is not specified as model input, the default value is set to False self.min_year = c.MINUTES_YEAR # [min/year] number of minutes in one year + self.min_week = c.MINUTES_WEEK # [min/week] number of minutes in one week + self.min_month = c.MINUTES_MONTH # [min/month] number of minutes in one month self.rhoNrh2 = c.H2NDENSITY # [kg/m^3] hydrogen density under normal conditions self.rhoStdh2 = c.H2SDENSITY # [kg/m^3] hydrogen density under standard conditions self.H2MolMass = c.H2MOLMASS # [kg/mol] Hydrogen molar mass @@ -53,6 +56,7 @@ def __init__(self,parameters,timestep_number,timestep=False): self.H2_lhv = c.LHVH2 # [MJ/kg] Hydrogen Lower Heating Value self.lhv_nvol = c.LHV_H2NVOL # [kWh/Nm3] Hydrogen volumetric LHV under normal conditions self.watercons = 0.015 # [m^3/kgH2] cubic meters of water consumed per kg of produced H2. Fixed value of 15 l of H2O per kg of H2. https://doi.org/10.1016/j.rset.2021.100005 + self.cp_water = c.CP_WATER*1000 # [J/kgK] Water Mass specific constant pressure specific heat # self.CF = np.zeros(timestep_number) # [%] electrolyer stack Capacity Factor self.cost = False # will be updated with tec_cost() @@ -64,6 +68,7 @@ def __init__(self,parameters,timestep_number,timestep=False): self.timestep_number = timestep_number # [-] number of timestep if code is launched from electrolyzer.py self.timesteps_year = self.min_year/self.timestep # [-] number of simulation steps in one year for the given simulaiton inputs + self.timesteps_week = self.min_week/self.timestep # [-] number of simulation steps in one year for the given simulaiton inputs "2H2O --> 2H2 + O2" # Electorlysis chemical reaction general @@ -286,10 +291,16 @@ def __init__(self,parameters,timestep_number,timestep=False): self.cell_currdens = np.zeros(timestep_number) # cell current density at every hour self.AmbTemp = c.AMBTEMP # [K] Standard ambient temperature - 15 °C if self.ageing: # if ageing effects are being considered - self.stack = {} # initialize an empty dictionary to track operations for each module - self.stack['T[°C]'] = np.zeros(timestep_number) - self.stack['Activation'] = np.zeros(timestep_number) - self.stack['Pol_curve_history'] = [] # empty list to keep track of the polarization curve shift during utilization + self.stack = { + 'T[°C]': [], # Initialize empty list to track module temperature for each timestep + 'Activation[-]': np.zeros(timestep_number), # Initialize an array to track module activation (1 for on, 0 for off) for each timestep + 'Pol_curve_history': [], # Initialize an empty list to keep track of polarization curve shifts during utilization + 'Module_efficiency[-]': [], # Initialize an empty list to keep track of module efficiency over time + 'Conversion_factor[kg/MWh]': np.zeros(timestep_number), # Initialize an array to keep track of performance evolution + 'hydrogen_production[kg/s]': np.zeros(timestep_number), # Initialize an array to keep track of hydrogen production + 'I_op[A]': np.zeros(timestep_number), # Initialize an array to keep track of operating current + 'V_op[V]': np.zeros(timestep_number) # Initialize an array to keep track of operating voltage + } # for i in range(self.n_modules): # iterate over the number of modules specified in the parameters # self.stack[f"module_{i+1}"] = {'T[°C]' : np.zeros(timestep_number), # for each module, an empty array is created to track parameter behaviour for every timestep of the simulation @@ -388,9 +399,6 @@ def __init__(self,parameters,timestep_number,timestep=False): self.Voltage = self.nc*self.CellVoltage # [V] - module voltage self.Current = self.CellCurrDensity*self.CellArea # [A] - module current self.Current = np.round(self.Current) # [A] - module current rounded - if self.ageing: # if ageing effects are being considered - self.stack['Pol_curve_history'].append(self.Voltage) # saving ideal polarization curve as first element to keep track og ageing effects - # Interpolation of calculated functioning points to detect the best fit-function for i-V curve' self.num = Ndatapoints # [-] number of intervals to be considered for the interpolation self.x2 = np.linspace(0,max(self.CellCurrDensity),self.num)# setting xlim for range of validity of LinRegression Calculation - Only for plot-related reasons @@ -402,7 +410,6 @@ def __init__(self,parameters,timestep_number,timestep=False): # Defining Electrolyzer Max Power Consumption Power_inp = [] # [kW] Initializing power input series for i in range(len(self.Current)): - pot = (self.Current[i]*self.Voltage[i])/1000 # [kW] Power_inp.append(pot) @@ -466,6 +473,13 @@ def __init__(self,parameters,timestep_number,timestep=False): self.maxh2prod = round(max(h2_prodmodulemass),8) # [kg/s] maximum amount of produced hydrogen for the considered module self.maxh2prod_stack = self.maxh2prod*self.n_modules # [kg/s] maximum amount of produced hydrogen for the considered stack + self.Σ = (max(h2_prodmodulemass)*3600)/(self.Npower/1000) # [kg/MWh] ideal converison factor + self.eta_module = np.array(self.eta_module) + + if self.ageing: # if ageing effects are being considered + self.stack['Pol_curve_history'].append(self.Voltage) # saving ideal polarization curve as first element to keep track og ageing effects + self.stack['Module_efficiency[-]'].append(self.eta_module) # saving ideal efficiency curve + self.stack['T[°C]'].append(self.design_T -273.15) # [°C] 'Functions for predicting the operating behaviour' # interpolating functions @@ -610,125 +624,134 @@ def ageing(self,step,power):#,module_id,temp): P_absorbed : float electricity absorbed [kW] """ - V_inctime = (3*1e-6)/60 # [V/min] voltage increase - time degradation in μV - V_incTemp = 5*1e-3 # [5mV/°C] voltage increase - thermal degradation + V_inctime = (3*1e-6)/60 # [V/min] voltage increase - time degradation in μV + V_incTemp = 5*1e-3 # [5mV/°C] voltage increase - thermal degradation + + 'Ideal behaviour' + Iop_id = self.PI(power) # [A] module operating ideal current based on system power input + Vop_id = self.PV(power) # [V] module operating ideal voltage based on system power input + H2op_id = self.P2h(power) # [kg/s] module oprating ideal hydrogen production based on system power input - V_time = V_inctime*self.timestep # [V] voltge time degradation tha may occur for the considered step in the simulation if the electorlyzer is turned on +# ============================================================================= +# if step == 0: +# hydprod_prev = 0 # [kg/s] effect on therma degradation of hydrogen produced at step 0 are neglected +# Iop_prev = 0 # [A] +# Vop_prev = 0 # [V] +# Tel_prev = 71 # [°C] +# else: +# hydprod_prev = self.stack['hydrogen_production[kg/s]'][step-1] # [kg/s] hydrogen prod. Effects of production at step-1 manifesting on polarization curve at current step +# Iop_prev = self.stack['I_op[A]'][step-1] # [A] +# Vop_prev = self.stack['V_op[V]'][step-1] # [V] +# Tel_prev = self.stack['T[°C]'][step-1] # [°C] +# +# +# temp = el.thermal_effects(Tel_prev,hydprod_prev,Iop_prev,Vop_prev) # [°C] module temperature at current timestep +# self.stack['T[°C]'].append(temp) # [°C] module temperature +# ============================================================================= 'Computing ageing phenomena' + V_time = V_inctime*self.timestep # [V] voltge time degradation tha may occur for the considered step in the simulation if the electorlyzer is turned on - # # initialising empty lists to save the parameters ofinterest - # T = [] # [°C] electorlyzer temperature - # operation = [] # [0/1] 1 if the electorlyzer was swithced on in the considered timestep, 0 if it didn't activate. + # operating time counter + self.stack['Activation[-]'][step] = 1 + operation_time = sum(self.stack['Activation[-]']) - # contatore tempo utilizzo - self.stack['Activation'][step] = 1 - operation_time = sum(self.stack['Activation']) + # V_thermal = V_incTemp*(self.design_T-temp) # [V] voltage thermal degradation # updating polarization curve - polarization_curve_new = self.Voltage + V_time*operation_time #+ V_incTemp*(self.design_T-temp) # [V] self.Voltage is the design polarization curve + polarization_curve_new = self.Voltage + V_time*operation_time #+ V_thermal # [V] self.Voltage represents the design polarization curve - # #limit on the time degradation for cell voltage - SI CONSIDERA SOLO LA DEGRADAZIONE DOVUTA AL TEMPO DI UTILIZZO QUI E NON QUELLA DOVUTA ALLA VARIAZIONE DI TEMPERATURA + # #limit on the time degradation for cell voltage # if max(V_array - V_T * (T_operation-T_el)) > 2.3: # print('High voltage, new electrolyzer is needed') - Iop_id = self.PI(power) # [A] module operating ideal current based on system power input - Vop_id = self.PV(power) # [V] module operating ideal voltage based on system power input - H2op_id = self.P2h(power) # [kg/s] module oprating ideal hydrogen production based on system power input #link between cell current (= stack current) and cell voltage: polarization curve IV_new = interp1d(self.Current,polarization_curve_new) # Linear spline 1-D interpolation - updating I-V function for ageing effect - V_op = IV_new(Iop_id) + V_op = IV_new(Iop_id) # [V] operational voltage accounting for ageing effect - ageing_factor = Vop_id/V_op + ageing_factor = Vop_id/V_op # [-] ageing factor expressed as the ratio between operational and ideal voltage for the considered current. Denominator increases over time + ageing_factor_rated = max(self.Voltage)/max(polarization_curve_new) # [-] ageing factor for functioning at rated power + hyd_produced = H2op_id*ageing_factor # [kg/s] hydrogen produced in operative conditions accounting for ageing effect - hyd_produced = H2op_id*ageing_factor # [kg/s] hydrogen produced in operative conditions accounting for ageing effect - #conversion factor calculation: H2 stack production / P stack consumption - # conv_factor = max(H2_array)/ (max(I_array) * max(V_array) * n_cells) # [kg/kWh] + self.stack['Conversion_factor[kg/MWh]'][step] = self.Σ*ageing_factor # [kg/MWh] ideal converison factor + self.stack['hydrogen_production[kg/s]'][step] = hyd_produced # [kg/s] hydrogen produced in the timestep + self.stack['I_op[A]'][step] = Iop_id # [A] operating current + self.stack['V_op[V]'][step] = V_op # [V] operating voltage + if step % 200 == 0: + print(step) if step % self.timesteps_year == 0: self.stack['Pol_curve_history'].append(polarization_curve_new) + self.stack['Module_efficiency[-]'].append(self.eta_module*(self.Voltage/polarization_curve_new)) # [kg/MWh] ideal converison factor print(f'Year {int(step/self.timesteps_year)}') return hyd_produced - # self.modules_operation[f"module_{i+1}"] = {'conv_factor':np.zeros(timestep_number)} # for each module, an empty array is created to track parameter behaviour for every timestep of the simulation - # def thermal_effects (self,) - # def EL_transit(H2_prod,f_i_V, f_H2_i, T_el, n_cells, T_ext, kWh_factor): - - # ''' - # Themal model: exothermic reaction (heat production from thermal lossess DeltaV = V-Vtn) - # T_el : electrolyzer temperature - # ''' - - # n_cells_design = 106 # number of cells in the 1MW module - # L_design = 3 # [m] design length of the gas-liquid separator - # r1_design = 0.3 # [m] internal radius + def thermal_effects (self,T_el,hydrogen,Iop,Vop): + ''' + Themal model: exothermic reaction (heat production from thermal lossess DeltaV = V-Vtn) + T_el : electrolyzer temperature + ''' + # 1 MW module - design dimensions + L_design = 3 # [m] design length of the gas-liquid separator + r1_design = 0.3 # [m] internal radius + ncells_des = 100 # [-] number of cells for 1 MW module - # SF = n_cells/n_cells_design # scale factor della configurazione, lo applico al volume + SF = ncells_des/self.nc # scale factor della configurazione, lo applico al volume - # L = L_design * SF**(1/3) # scale of the geometry accoring to the SF + L = L_design*SF**(1/3) # scale of the geometry accoring to the SF - # pi = math.pi - # op_time = (60*60)/(kWh_factor) # [s] simulation time in seconds - # T_op = 71 # [°C] operating temperature - # # T_ext = 25 # [°C] external temperature, activate in case + π = math.pi + op_time = self.timestep*60 # [s] simulation time in seconds + T_op = self.design_T # [°C] operating temperature + T_ext = 25 # [°C] external temperature, activate in case - # V_tn = 1.48 # [V] thermoneutral voltage + V_tn = 1.48 # [V] thermoneutral voltage https://www.scopus.com/record/display.uri?eid=2-s2.0-77958033092&origin=inward - # 'geometry' - # r1 = r1_design * SF**(1/3) - # s1 = 0.004 # [m] thickness of the electrolyzer container + 'geometry' + r1 = r1_design * SF**(1/3) + s1 = 0.004 # [m] thickness of the electrolyzer container - # r3 = 1 # [m] container internal radius - # s2 = 0.005 # [m] container thickness + r3 = 1 # [m] container internal radius + s2 = 0.005 # [m] container thickness - # 'heat coefficeints' - # h1 = 100 # [W/ m^2K] internal convection between water (H2O + 30% KOH) - tank - # h2 = 10 # [W/ m^2K] convection tank-container - # h3 = 20 # [W/ m^2K] external convection container-air + 'heat coefficeints' + h1 = 100 # [W/ m^2K] internal convection between water (H2O + 30% KOH) - tank + h2 = 10 # [W/ m^2K] convection tank-container + h3 = 20 # [W/ m^2K] external convection container-air - # k1 = 52 # [W/ mK] steel tank conduction - # k2 = 52 # [W/ mK] steel container conduction + k1 = 52 # [W/ mK] steel tank conduction + k2 = 52 # [W/ mK] steel container conduction - # 'instulated container' - # insulation = True - # if insulation == True: - # s2 = 0.2 # [m] insulation layer thickness - - # k2 = 0.05 # [W/ mK] insulation layer conduction + 'instulated container' + insulation = True + if insulation == True: + s2 = 0.2 # [m] insulation layer thickness + k2 = 0.05 # [W/ mK] insulation layer conduction - - # 'electrolyte' - # m_elect = L * r1 * r1 * pi * 1000 / 2 # [kg] of H2O in gas-liquid separator (half water, half gas) - # c_elect = 4190 # [J/kg*K] water specific heat + 'electrolyte' + m_elect = L*r1*r1*π*1000/2 # [kg] of H2O in gas-liquid separator (half water, half gas) + c_elect = self.cp_water # [J/kg*K] water specific heat - # a = h1*2*pi*r1*L - # b = k1*2*pi*L/np.log((r1 + s1)/r1) - # c = h2*2*pi*(r1 + s1)*L - # d = h2*2*pi*r3*L - # e = k2*2*pi*L/np.log((r3 + s2)/r3) - # f = h3*2*pi*(r3 + s2)*L + a = h1*2*π*r1*L + b = k1*2*π*L/np.log((r1 + s1)/r1) + c = h2*2*π*(r1 + s1)*L + d = h2*2*π*r3*L + e = k2*2*π*L/np.log((r3 + s2)/r3) + f = h3*2*π*(r3 + s2)*L - # q_lost = (T_el - T_ext) / (1/a + 1/b + 1/c + 1/d + 1/e + 1/f) # [W] thermal power lost to the environment + Qloss = (T_el-T_ext)/(1/a + 1/b + 1/c + 1/d + 1/e + 1/f) # [W] thermal power lost to the environment - # if H2_prod > 0: - # #stack current from H2 production - # I_op = f_H2_i(H2_prod) - # #cell voltage from cell current (= stack current) - # V_op = f_i_V(I_op) - - # #thermal power generated form the stack - # q_gain = n_cells * (V_op-V_tn)*I_op*1000 # [V]*[kA]*1000 = [V]*[A] = [W] produce thermal power - - # Tx = T_el + (op_time / (m_elect * c_elect)) * (q_gain - q_lost) + if hydrogen > 0: + #thermal power generated form the stack + Qgain = (Vop-V_tn)*(Iop*1000) # [V]*[kA]*1000 = [V]*[A] = [W] produce thermal power + temp = T_el + (op_time/(m_elect * c_elect))*(Qgain-Qloss) # [°C] - # if Tx > T_op: - # Tx = T_op - - # else: - # Tx = T_el - (op_time / (m_elect * c_elect)) * q_lost - - # return Tx + if temp > T_op: + temp = T_op + else: + temp = T_el - (op_time/(m_elect*c_elect))*Qloss + return temp # Computing Electrolyzers performances via Spline Interpolation def use(self,step,storable_hydrogen=False,p=False,hydrog=False): @@ -981,7 +1004,9 @@ def use1(self,step,p,max_hyd_storable): watCons = 0 # [m^3/s] water volumetric consumption CellCurrDensity1 = 0 hydrogen = hyd - + # if self.ageing: + # hyd = electrolyzer.ageing(self,step,P_absorbed) # [kg/s] hydrogen produced + else: if self.ageing: 'Electrolyzer efficiency' @@ -1076,15 +1101,15 @@ def tech_cost(self,tech_cost): "Npower": 1000, "number of modules": 1, "stack model": 'Alkaline', - "minimum_load": 0.1, + "minimum_load": 0.3, "ageing": True, "strategy": 'hydrogen-first', "only_renewables":True } - sim_steps = 8760*3 # [step] simulated period of time - usually it's 1 year minimum - timestep = 60 # Given in minutes [min] + sim_steps = 8760*6 # [step] simulated period of time - usually it's 1 year minimum + timestep = 60 # [min] selected timestep el = electrolyzer(inp_test,sim_steps,timestep=timestep) # creating electrolyzer object # el.plot_polarizationpts() # plot example @@ -1229,6 +1254,7 @@ def tech_cost(self,tech_cost): # el = electrolyzer(inp_test,sim_steps,timestep=timestep) # creating electrolyzer object #%% + 'Polarization Curve History' fig, ax = plt.subplots(dpi=1000) for index,item in enumerate(el.stack['Pol_curve_history']): @@ -1237,5 +1263,26 @@ def tech_cost(self,tech_cost): ax.legend(title='Year',fontsize='small') ax.set_xlabel('Current density [A/cm$^{2}$]') ax.set_ylabel('Stack Voltage [V]') + # ax.set_ylim(135.10,135.3) + ax.grid(alpha=0.5,zorder=-1) + plt.show() + + 'Efficiency History' + fig, ax = plt.subplots(dpi=1000) + + for index,item in enumerate(el.stack['Module_efficiency[-]']): + ax.plot(el.CellCurrDensity_Acm2,item,label=f'{index}') + + ax.legend(title='Year',fontsize='small') + ax.set_xlabel('Current density [A/cm$^{2}$]') + ax.set_ylabel('Module efficiency [-]') + ax.grid(alpha=0.5,zorder=-1) + plt.show() + + 'Conversion Factor Update' + fig, ax = plt.subplots(dpi=1000) + ax.scatter(np.arange(sim_steps),el.stack['Conversion_factor[kg/MWh]'], s=0.1) + ax.set_ylabel('Σ [kg/MWh]') + ax.set_xlabel('Time [step]') ax.grid(alpha=0.5,zorder=-1) - plt.show() \ No newline at end of file + plt.show()