diff --git a/exercises/TL.ipynb b/exercises/TL.ipynb index 62ea63f..40f80d4 100644 --- a/exercises/TL.ipynb +++ b/exercises/TL.ipynb @@ -22,8 +22,8 @@ { "metadata": { "ExecuteTime": { - "end_time": "2024-05-19T21:15:54.174121Z", - "start_time": "2024-05-19T21:15:53.827081Z" + "end_time": "2024-05-20T08:29:46.404464Z", + "start_time": "2024-05-20T08:29:46.382722Z" } }, "cell_type": "code", @@ -36,8 +36,9 @@ "import matplotlib.pylab as plt\n", "\n", "import tensorflow as tf\n", + "import tf_keras as keras\n", "import tensorflow_hub as hub\n", - "from tensorflow.keras import datasets\n", + "from keras import datasets\n", "\n", "import datetime\n", "import os\n", @@ -60,7 +61,7 @@ ] } ], - "execution_count": 12 + "execution_count": 22 }, { "metadata": {}, @@ -74,8 +75,8 @@ { "metadata": { "ExecuteTime": { - "end_time": "2024-05-19T20:45:11.469411Z", - "start_time": "2024-05-19T20:45:11.464721Z" + "end_time": "2024-05-20T08:25:22.129303Z", + "start_time": "2024-05-20T08:25:22.117417Z" } }, "cell_type": "code", @@ -88,13 +89,13 @@ ], "id": "e75a0e562e19e450", "outputs": [], - "execution_count": 2 + "execution_count": 3 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-05-19T21:21:25.048337Z", - "start_time": "2024-05-19T21:21:18.264524Z" + "end_time": "2024-05-20T08:25:58.341810Z", + "start_time": "2024-05-20T08:25:55.329612Z" } }, "cell_type": "code", @@ -102,13 +103,13 @@ "IMAGE_SIZE = 96\n", "IMAGE_SHAPE = (IMAGE_SIZE, IMAGE_SIZE)\n", "\n", - "classifier = tf.keras.Sequential([\n", + "classifier = keras.Sequential([\n", " hub.KerasLayer(classifier_model, input_shape=IMAGE_SHAPE+(3,))\n", "])" ], "id": "a7136361859e97fa", "outputs": [], - "execution_count": 18 + "execution_count": 5 }, { "metadata": {}, @@ -119,13 +120,13 @@ { "metadata": { "ExecuteTime": { - "end_time": "2024-05-19T22:00:26.131418Z", - "start_time": "2024-05-19T22:00:25.307459Z" + "end_time": "2024-05-20T08:28:26.216314Z", + "start_time": "2024-05-20T08:28:25.142673Z" } }, "cell_type": "code", "source": [ - "path = tf.keras.utils.get_file('image.jpg','https://static.reserved.com/media/catalog/product/5/6/5698Y-99X-011-1-808148.jpg')\n", + "path = keras.utils.get_file('image.jpg','https://static.reserved.com/media/catalog/product/5/6/5698Y-99X-011-1-808148.jpg')\n", "\n", "img = Image.open(path).resize((IMAGE_SIZE, IMAGE_SIZE))\n", "os.remove(path)\n", @@ -141,7 +142,7 @@ "output_type": "stream", "text": [ "Downloading data from https://static.reserved.com/media/catalog/product/5/6/5698Y-99X-011-1-808148.jpg\n", - "211086/211086 [==============================] - 0s 2us/step\n" + "211086/211086 [==============================] - 0s 0us/step\n" ] }, { @@ -155,13 +156,13 @@ "output_type": "display_data" } ], - "execution_count": 41 + "execution_count": 19 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-05-19T22:01:25.535482Z", - "start_time": "2024-05-19T22:01:25.090431Z" + "end_time": "2024-05-20T08:26:04.472091Z", + "start_time": "2024-05-20T08:26:03.985009Z" } }, "cell_type": "code", @@ -181,18 +182,18 @@ "(96, 96, 3)" ] }, - "execution_count": 44, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], - "execution_count": 44 + "execution_count": 7 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-05-19T22:01:28.188002Z", - "start_time": "2024-05-19T22:01:28.008090Z" + "end_time": "2024-05-20T08:26:32.405912Z", + "start_time": "2024-05-20T08:26:05.082971Z" } }, "cell_type": "code", @@ -202,11 +203,19 @@ ], "id": "a5b9865672a6e8e7", "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-05-20 10:26:26.069855: I external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:454] Loaded cuDNN version 8904\n", + "2024-05-20 10:26:27.430147: I external/local_tsl/tsl/platform/default/subprocess.cc:304] Start cannot spawn child process: No such file or directory\n" + ] + }, { "name": "stdout", "output_type": "stream", "text": [ - "1/1 [==============================] - 0s 64ms/step\n" + "1/1 [==============================] - 26s 26s/step\n" ] }, { @@ -215,18 +224,18 @@ "(1, 1001)" ] }, - "execution_count": 45, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], - "execution_count": 45 + "execution_count": 8 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-05-19T22:01:29.354375Z", - "start_time": "2024-05-19T22:01:29.337046Z" + "end_time": "2024-05-20T08:27:55.569800Z", + "start_time": "2024-05-20T08:27:55.553420Z" } }, "cell_type": "code", @@ -242,12 +251,12 @@ "" ] }, - "execution_count": 46, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], - "execution_count": 46 + "execution_count": 15 }, { "metadata": {}, @@ -258,24 +267,24 @@ { "metadata": { "ExecuteTime": { - "end_time": "2024-05-19T22:01:31.994749Z", - "start_time": "2024-05-19T22:01:31.990679Z" + "end_time": "2024-05-20T08:28:36.490311Z", + "start_time": "2024-05-20T08:28:36.482464Z" } }, "cell_type": "code", "source": [ - "labels_path = tf.keras.utils.get_file('ImageNetLabels.txt','https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt')\n", + "labels_path = keras.utils.get_file('ImageNetLabels.txt','https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt')\n", "imagenet_labels = np.array(open(labels_path).read().splitlines())" ], "id": "ad6b945217e8f7b", "outputs": [], - "execution_count": 47 + "execution_count": 20 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-05-19T22:01:33.067776Z", - "start_time": "2024-05-19T22:01:32.896686Z" + "end_time": "2024-05-20T08:28:41.199358Z", + "start_time": "2024-05-20T08:28:41.024161Z" } }, "cell_type": "code", @@ -292,13 +301,13 @@ "text/plain": [ "
" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAGbCAYAAAAr/4yjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAcXklEQVR4nO3de3BV5b3/8c/OPYR7CBcFQwrEKkKdpsARw025NCl20OlwqO1vID0Kpd471apzjog6x6JY4ahVaU/hpz9qWzo/pVWsQAElEdGWoEBFIyVyPYKUW7ia7Of84eRLnmeTvbNJQMD3a4aZ/d1r7bVWNjv57PV81yXinHMCAEBSyhe9AQCAswehAAAwhAIAwBAKAABDKAAADKEAADCEAgDAEAoAAEMoAAAMoYBm69mzpyZNmmT1ihUrFIlEtGLFihZbRyQS0f33399iyzsXVFdXKxKJaObMmad9XcOHD9fw4cNP+3pw9iMUznHz5s1TJBKxf1lZWSosLNTNN9+sTz755IvevKQsWrTonPjDX1paqg4dOii8QkxlZaUikYjy8/NjXrNs2TJFIhHNmTPnTG2mpM+DpaysTL169VJWVpa6du2qoUOHatq0aXFft2PHDt1///1au3btmdlQnDXSvugNQMt44IEHVFBQoKNHj6q8vFxPP/20Fi1apPXr16tVq1ZndFuGDh2qI0eOKCMjI6nXLVq0SE899dRJg+HIkSNKSzs7Pq7FxcV69dVXtX79evXr18+er6ioUFpamrZs2aJt27ape/fu3rT6154pH330kQYMGKDs7Gz94Ac/UM+ePbVz506tWbNGM2bM0PTp023exYsXe6/dsWOHpk+frp49e+ryyy8/Y9uML97Z8VuGZispKdE3vvENSdINN9yg3Nxc/fznP9fChQv13e9+96SvOXTokHJyclp8W1JSUpSVldWiy2zp5TVH/R/28vLymFAoLS3VsmXLVF5ergkTJti08vJy5ebm6pJLLjlj2/n444+rpqZGa9eujdl72bVrl1cnG+A4fzF8dJ666qqrJEmbN2+WJE2aNEmtW7fWpk2bVFpaqjZt2uh73/ueJCkajWrWrFnq27evsrKy1KVLF02ZMkV79+71lumc00MPPaTu3burVatWGjFihDZs2BCz7sZ6CqtXr7ahl5ycHPXv31+zZ8+27XvqqackyRsOq3eynkJlZaVKSkrUtm1btW7dWldffbXeeustb5764bWKigr9+Mc/Vl5ennJycnTttddq9+7d3rz79+/Xxo0btX///rjv7cCBA5WRkWHf/utVVFRo6NChGjhwoDctGo3qrbfe0uDBg+1n2rdvn26//Xb16NFDmZmZ6t27t2bMmKFoNHrSdT7++OPKz89Xdna2hg0bpvXr18fdRknatGmTunfvftLhrM6dO3t1w57CihUrNGDAAElSWVmZ/V/MmzfP5l+9erW++c1vql27dmrVqpWGDRsW837g3MSewnlq06ZNkqTc3Fx7rra2VmPGjFFxcbFmzpxpw0pTpkzRvHnzVFZWpltvvVWbN2/Wk08+qcrKSlVUVCg9PV2SdN999+mhhx5SaWmpSktLtWbNGo0ePVrHjx9PuD1LlizR2LFj1a1bN912223q2rWr3n//fb388su67bbbNGXKFO3YsUNLlizR888/n3B5GzZs0JAhQ9S2bVvdddddSk9P17PPPqvhw4fr9ddf16BBg7z5b7nlFnXo0EHTpk1TdXW1Zs2apZtvvlm/+93vbJ4XX3xRZWVlmjt3rtc4D2VlZamoqEjl5eX23NatW7V161YNHjxY+/bt0yuvvGLT1q1bpwMHDtgexuHDhzVs2DBt375dU6ZM0UUXXaQ333xT99xzj3bu3KlZs2Z563vuued08OBB3XTTTTp69Khmz56tq666SuvWrVOXLl0a3c78/HwtXbpUy5Ytsy8JTXHJJZfogQce0H333afJkydryJAhkqTBgwdL+rw/UlJSoqKiIk2bNk0pKSmaO3eurrrqKq1cuVIDBw5s8rpwFnI4p82dO9dJckuXLnW7d+92W7dudb/97W9dbm6uy87Odtu2bXPOOTdx4kQnyd19993e61euXOkkufnz53vP//nPf/ae37Vrl8vIyHDf+ta3XDQatfnuvfdeJ8lNnDjRnlu+fLmT5JYvX+6cc662ttYVFBS4/Px8t3fvXm89DZd10003ucY+kpLctGnTrB43bpzLyMhwmzZtsud27Njh2rRp44YOHRrz/owcOdJb1x133OFSU1Pdvn37YuadO3fuSbehoTvvvNNJsvf3hRdecFlZWe7YsWNu0aJFLjU11R04cMA559yTTz7pJLmKigrnnHMPPvigy8nJcR9++KG3zLvvvtulpqa6LVu2OOec27x5s5Pk/T8659zq1audJHfHHXfE3cb169e77OxsJ8ldfvnl7rbbbnMvvfSSO3ToUMy8w4YNc8OGDbP6nXfeOel7EY1GXZ8+fdyYMWO89/Pw4cOuoKDAjRo1KsE7h7Mdw0fniZEjRyovL089evTQhAkT1Lp1a7344ou68MILvfmmTp3q1QsWLFC7du00atQoffrpp/avqKhIrVu31vLlyyVJS5cu1fHjx3XLLbd4wzq33357wm2rrKzU5s2bdfvtt6t9+/betIbLaqq6ujotXrxY48aN01e+8hV7vlu3brr++utVXl6uAwcOeK+ZPHmyt64hQ4aorq5OH3/8sT03adIkOefi7iXUq//Wv3LlSkmfDx0VFRUpIyNDV1xxhQ0Z1U/Lysqyns+CBQs0ZMgQdejQwXvPR44cqbq6Or3xxhveusaNG+f9Pw4cOFCDBg3SokWL4m5j3759tXbtWn3/+99XdXW1Zs+erXHjxqlLly765S9/mfBnPJm1a9eqqqpK119/vfbs2WPbfujQIV199dV64403Gh0Cw7mB4aPzxFNPPaXCwkKlpaWpS5cuuvjii5WS4md+Wlqad0SMJFVVVWn//v0xY8z16huS9X88+/Tp403Py8tThw4d4m5b/VDWZZdd1vQfKI7du3fr8OHDuvjii2OmXXLJJYpGo9q6dav69u1rz1900UXefPXbHPZNmurKK6+0XsWECRNUUVGhUaNGSZLat2+vSy+91J6rqKjQgAEDrJlbVVWl9957T3l5eSdddtgEDt9zSSosLNTvf//7hNtZWFio559/XnV1dfr73/+ul19+WY888ogmT56sgoICjRw5Mqmfu6qqSpI0ceLERufZv39/ws8Ezl6Ewnli4MCB9k20MZmZmTFBEY1G1blzZ82fP/+kr2nsD9e5JjU19aTPu1O8G21ubq6++tWvqry8XDU1NXrvvfe8Y/8HDx6s8vJybdu2TVu2bLGmvvT5ez5q1CjdddddJ112YWHhKW1TPKmpqerXr5/69eunK664QiNGjND8+fOTDoX6vYBHH3200UNVW7du3dzNxReIUPiS69Wrl5YuXaorr7xS2dnZjc5XfwRLVVWVN2Sze/fuhN+2e/XqJUlav3593D9CTR1KysvLU6tWrfTBBx/ETNu4caNSUlLUo0ePJi2rOYqLi/XrX/9aixcvVl1dnTVipc9D4YUXXrAjsBqen9CrVy/V1NQ0+Q9y/bfzhj788EP17NnzlLa7/svDzp07G52nsf+L+v/Ltm3bJh0oODfQU/iSGz9+vOrq6vTggw/GTKutrdW+ffskfd6zSE9P1xNPPOF9uw6PlDmZr3/96yooKNCsWbNsefUaLqv+nIlwnlBqaqpGjx6thQsXqrq62p7/5JNP9Jvf/EbFxcVq27Ztwu0KNfWQ1HrFxcWqq6vTzJkz1adPH2+vavDgwaqpqdEvfvELpaSkeIExfvx4rVq1Sq+99lrMMvft26fa2lrvuZdeeknbt2+3+u2339bq1atVUlISd/tWrlypzz77LOb5+l7EyYbf6jX2f1FUVKRevXpp5syZqqmpiXldeJgvzj3sKXzJDRs2TFOmTNHDDz+stWvXavTo0UpPT1dVVZUWLFig2bNn6zvf+Y7y8vL0k5/8RA8//LDGjh2r0tJSVVZW6tVXX1WnTp3iriMlJUVPP/20rrnmGl1++eUqKytTt27dtHHjRm3YsMH+OBYVFUmSbr31Vo0ZM0apqaneCWANPfTQQ1qyZImKi4v1ox/9SGlpaXr22Wd17NgxPfLII6f0XjT1kNR69d/+V61aFTN/YWGhOnXqpFWrVqlfv35eg/3OO+/UH//4R40dO1aTJk1SUVGRDh06pHXr1ukPf/iDqqurvfe0d+/eKi4u1tSpU3Xs2DHNmjVLubm5jQ4/1ZsxY4b+9re/6brrrlP//v0lSWvWrNFzzz2njh07xj1IoFevXmrfvr2eeeYZtWnTRjk5ORo0aJAKCgr0q1/9SiUlJerbt6/Kysp04YUXavv27Vq+fLnatm2rP/3pTwnfO5zFvtiDn9Bc9YdRvvPOO3HnmzhxosvJyWl0+pw5c1xRUZHLzs52bdq0cf369XN33XWX27Fjh81TV1fnpk+f7rp16+ays7Pd8OHD3fr1611+fn7cQ1LrlZeXu1GjRrk2bdq4nJwc179/f/fEE0/Y9NraWnfLLbe4vLw8F4lEvMNTFRyS6pxza9ascWPGjHGtW7d2rVq1ciNGjHBvvvlmk96fk21jMoek1rvgggucJDdnzpyYad/+9redJDd16tSYaQcPHnT33HOP6927t8vIyHCdOnVygwcPdjNnznTHjx93zp04JPXRRx91jz32mOvRo4fLzMx0Q4YMce+++27CbauoqHA33XSTu+yyy1y7du1cenq6u+iii9ykSZO8Q3mdiz0k1TnnFi5c6C699FKXlpYW875UVla66667zuXm5rrMzEyXn5/vxo8f7/7yl7804V3D2Szi3Cl22gAA5x16CgAAQygAAAyhAAAwhAIAwBAKAABDKAAATJNPXjuVq1kCAM4eTTkDgT0FAIAhFAAAhlAAABhCAQBgCAUAgCEUAACGUAAAGEIBAGAIBQCAIRQAAIZQAAAYQgEAYAgFAIAhFAAAhlAAABhCAQBgCAUAgCEUAACGUAAAGEIBAGAIBQCAIRQAAIZQAAAYQgEAYAgFAIAhFAAAhlAAABhCAQBgCAUAgCEUAACGUAAAGEIBAGAIBQCAIRQAAIZQAAAYQgEAYAgFAIAhFAAAhlAAABhCAQBgCAUAgCEUAACGUAAAGEIBAGAIBQCAIRQAAIZQAAAYQgEAYAgFAIAhFAAAhlAAABhCAQBgCAUAgCEUAACGUAAAGEIBAGAIBQCAIRQAAIZQAAAYQgEAYAgFAIAhFAAAhlAAABhCAQBgCAUAgCEUAACGUAAAGEIBAGAIBQCAIRQAAIZQAAAYQgEAYAgFAIAhFAAAhlAAABhCAQBgCAUAgCEUAACGUAAAGEIBAGAIBQCAIRQAAIZQAAAYQgEAYAgFAIAhFAAAhlAAABhCAQBgCAUAgCEUAACGUAAAGEIBAGAIBQCAIRQAAIZQAAAYQgEAYAgFAIAhFAAAhlAAABhCAQBgCAUAgCEUAACGUAAAGEIBAGAIBQCAIRQAAIZQAAAYQgEAYAgFAIAhFAAAhlAAABhCAQBgCAUAgCEUAACGUAAAGEIBAGAIBQCAIRQAAIZQAAAYQgEAYAgFAIAhFAAAhlAAABhCAQBgCAUAgCEUAACGUAAAGEIBAGAIBQCAIRQAACbti94AnHs+/XRXUvNHIpGGVaK5gzoaLiyYO/xe4+IsO940KRIJl5VoW88c5+JvezwdO3ZswS3B+Y49BQCAIRQAAIZQAAAYegpIWiSS7Fh7MvOHY+fxXxtJCeb3ti2YFk3Ufzh7egihZN7z5vQfAPYUAACGUAAAGEIBAGDoKaDFJd9zSGLZqcETLlhXg+H0SNAjcAnOU4gVnCMRt+cQnD8RM2ty70lz+gKn8/3H+Y89BQCAIRQAAIZQAAAYegpIWuyYdXPGsP2x84Tj4cFYe9g3iEScN9V/aaJrHyV73sLp+05FXwBfFPYUAACGUAAAGIaP0OJiL0Hd8NDO+ENPiUdNmn7p7XC4KHa7Eh32eerDZImGf7gUBc5W7CkAAAyhAAAwhAIAwNBTQNISHy4Zjpef+O6RfM8gXFbT+wAt2Z9o2vxN15KHnNKfQEtiTwEAYAgFAIAhFAAAhp4CToPw/IBTX1LsFagTjfM3Z3w92V5Jc5aVHPoGOFPYUwAAGEIBAGAIBQCAoaeApCU+/D+4nlES84ZceG2kBP2KhkPvp/vy0/HH+eP3AFqyR+DCW5ICzcCeAgDAEAoAAEMoAAAMPQW0uJYc4Y7tIcQ/LyEliT5ColH9xOP+cdbloo1Pa6bY7QpqbuWJZmBPAQBgCAUAgCEUAACGngKaLdH5AIdqauzxiy8t9Kb964R/9erMjAyvjhk/TzDOf8ONN9jj/J49vWnVm6u9+sYG80rSoH/5l7jLjv0p42xL8J7E3C867ppiNXz16T7/Al9u7CkAAAyhAAAwhAIAwNBTQLPFjJcHY95F3xhgj48cPeZNqw0O57+mdLRX/7/58736+uu/79Vdu3T26tffKD+xHSsrvGlvr37Lq9u1a+vV6957z6s3ffSRV4+79lp9URq+o9xbAacTewoAAEMoAABMxDVxX5TD4FBv3949cadHUvzvGj/4P9fb46Wvrwpm9sslr73m1V/7Wj+vvvHGG706Vf7408JFi+3x0aNHvWkpKf7KVixb5tWFhX28OtGw2Okcxom37ETbFWrfIbdFtgnnvqZ8ZtlTAAAYQgEAYAgFAIChp4Ck7f2n31OIRPyP0P3/fo9X/+r/vtBg3vjj8ikpqV69+R/+YaFpaf70PoUXB9PT7fGBmoP+dga3rQw/0tu3bfHqaLQ5l78Of61arh+R7Gs7dOx0yuvC+YWeAgAgKYQCAMAQCgAAw2UukDxXG9T+ePmbq/zLSTQcxQx7Bi4a9BRS/en/+fDPvPo/gn5FfvduXv2Pj7fb48yMbG9aaqr/cc/KyvTqOb/8b6+efOO/eXVdXfBzx5WopxD2K8J+R7z5E/X36P/h1LGnAAAwhAIAwBAKAABDTwHJC/oA0WB8fOFL/9+rvzZgiD1Oz8jypoW33zx+/DOvLhnjX0q79ph/6e20jHR/eu2Jcf+sLH9a125dvbp/v0u9uqLCv9T2Bx9+4NX7/rnXqx+Z8bA9btfevwx3srffjATzx5wh4V87O8HSuLQ2Th17CgAAQygAAAyhAAAw9BSQtDpX59XROr/+cOPfvTqrwbh/m3ZtvGkXBOP8qWn+R/Jnjz7m1b/4L78+fszvQTQ8vv/YMf9+CtX/2OTVrTL970S79vg9g/79v+bVx44d9+qf/PTEORNHj/jr+t6E8V6dnu73N0ZcPdyrU8LzFOK1BYKeQnCaSPzXAgmwpwAAMIQCAMAQCgAAw/0UkLTd/7PVqxueGyBJhw8f9uqfP/aIPV791/e8aV26XujVnTvnefXb7/zVq7tfeIFXz3rc7zEcOnziPIbDh2u8adu2bfPq4JbNOnrogFcvX/4Xr/5kzyGvbtv2RH+kpuaIN23DhnX+uoKVhT2Gdu3aefXSP7/i1XXRE30bl+B3MewpdMzrevIZ8aXD/RQAAEkhFAAAhlAAABh6Ckjap//jj81Hg2sh1QbnLRw9emKc/9M9u71p/3bjD716wICBwWuDcw0+9u+jnBbcI2Hnzh32+NAhv6cQjuPPnz/fqzvn5Xr1wQN+j+Hee+/16sp3T/QNwl+jtOB8i44dO3j1J7v89yE9mD87279GVNmkSfZ46g8ne9PCb3Yu6F/kdqKngM/RUwAAJIVQAAAYho+QtN2f7PBqF95qMhpcBqPBIatHg0tfv/LyQq/+2cz/8pcVXtIhvCR18LlMSTnxPadjrj8cVPuZf0mMzdWbvbrqg41e/Vkw/4H9+7367rt/ao9Xv1PpTQuHf44FP3d2tn+r0IbbLUkZwSXFUxsMCS157VV/3ix/XeHhr53y/FuW4suL4SMAQFIIBQCAIRQAAIaeApK2J+gphKJhHyB64uaS4eGqNTUHvfqHU6Z49caPqr26Q4f2Xp2a6h9mumfPnhPbEfQ2wsNEw7q0pMSr77nnp14djfo3yWx4Ke29e/3Lbr///gav/us7b/vTN/q3+ty/3z/89ZprSr16zJgT9YXde3jTMoNbkob9idxOnQVI9BQAAEkiFAAAhlAAABh6Ckhaop5C+IFq+BELx+Vrg/pIcNntd9f6x/8//cwzXv1h0HNoeCmLuqB/EV7iu0tn/zyGKTfe4NUl37rGq8NzBxpK9GsU9lmidf7PXRe8D6lBX6Dhz5Wa6k8Lewihjrl5cafjy4OeAgAgKYQCAMAQCgAAQ08BSfvnrp1eHX6Awk+KazBHOG/UBddNCsfeg3MNGp4bIEmf7vYvQf3Rpo/scdhT6NLVv5Vn167+JaUb3l5TkjIzM706HOeP50z+viRaFz0F1KOnAABICqEAADCEAgDA0FNA0sKeQiLeEfgJP0bhDPF7DqF408PPcKI6sYY/WbisRN+3okEdrDs4b8FvvcR/j8LOTW6nLgm2BV8W9BQAAEkhFAAAhlAAAJi0xLMAvoTjkuHYfJyh+tix9/jLDudv2V6XP44fCTbFBdvWsIqE2+3qgjr+msNlhz9Vimt83nDh4XWWgGSwpwAAMIQCAMAQCgAAQ08BSXPJDuM3GOKOfWmC4/XD8fNgoD8cPvd7DgmWFfYIYsbig3MPYuo4Y/fJDusnOv8iiUVxRhGagz0FAIAhFAAAhuEjJC/RtbJjDq9sfEAj0WGfsSNACQ53jYbDUY2LWVTMqk/foZ1NvLpMk9Sdxu3Elw97CgAAQygAAAyhAAAw9BTQfDF9gaBuMFgf00OIuQp0gstCB2PxKUkdqxkuK4nXnnR21+jEcFV1MS8Ofo4kLxHurYvLWqAFsacAADCEAgDAEAoAAENPAckLxrBdwktln3ginDe89HU4lh4JmxCBuGclxJyHEP8ciGSH5v1LZ8dfVqJvXwlvM8q5CDhD2FMAABhCAQBgCAUAgIm4Jh4Q3bK3PQQAnGlN+XPPngIAwBAKAABDKAAADKEAADCEAgDAEAoAAEMoAAAMoQAAMIQCAMAQCgAAQygAAAyhAAAwhAIAwBAKAABDKAAADKEAADCEAgDAEAoAAEMoAAAMoQAAMIQCAMAQCgAAQygAAAyhAAAwhAIAwBAKAABDKAAADKEAADCEAgDAEAoAAEMoAAAMoQAAMIQCAMAQCgAAQygAAAyhAAAwhAIAwBAKAABDKAAADKEAADCEAgDAEAoAAEMoAAAMoQAAMIQCAMAQCgAAQygAAAyhAAAwhAIAwBAKAABDKAAADKEAADCEAgDAEAoAAEMoAAAMoQAAMIQCAMAQCgAAQygAAAyhAAAwhAIAwBAKAABDKAAADKEAADCEAgDAEAoAAEMoAAAMoQAAMIQCAMAQCgAAQygAAAyhAAAwhAIAwBAKAABDKAAADKEAADCEAgDAEAoAAEMoAAAMoQAAMIQCAMAQCgAAQygAAAyhAAAwhAIAwBAKAABDKAAADKEAADCEAgDAEAoAAEMoAAAMoQAAMIQCAMAQCgAAQygAAAyhAAAwhAIAwBAKAABDKAAADKEAADCEAgDAEAoAAEMoAAAMoQAAMIQCAMAQCgAAQygAAAyhAAAwhAIAwBAKAABDKAAADKEAADCEAgDAEAoAAEMoAAAMoQAAMIQCAMAQCgAAQygAAAyhAAAwhAIAwBAKAABDKAAADKEAADCEAgDAEAoAAEMoAAAMoQAAMIQCAMAQCgAAk9bUGZ1zp3M7AABnAfYUAACGUAAAGEIBAGAIBQCAIRQAAIZQAAAYQgEAYAgFAIAhFAAA5n8BuBVlXDTudJoAAAAASUVORK5CYII=" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAGbCAYAAAAr/4yjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABKgElEQVR4nO2deZRV1bXu56m+p4qi6AQKpFFAlFgKEYpORAMxBtM4TPMekJvoMPY3iTfmvRE78nxGonjV2MQEr17jNSbXJoptFAVENAIi2CHSF1JFUxTVN2e/P3iss+dcddY6q/Y+p6rw+43BGGfW2nvttZtzFnvOub4Z8TzPIwAAAICI0rp7AAAAAHoOmBQAAAAoMCkAAABQYFIAAACgwKQAAABAgUkBAACAApMCAAAABSYFAAAACkwKAAAAFJgUQGCGDx9OCxcuVPaKFSsoEonQihUrQjtGJBKhG2+8MbT+egPbt2+nSCRCS5YsSfqxZs6cSTNnzkz6cUDPB5NCL+fhhx+mSCSi/uXk5NCYMWPoiiuuoH379nX38JxYvnx5r/jhnzdvHpWUlJBUiFm/fj1FIhEqLy/X9nnttdcoEonQgw8+mKphEtHRiWXRokU0cuRIysnJoYEDB9L06dPphhtuMO5XVVVFN954I23YsCE1AwU9hozuHgAIh5tvvplGjBhBzc3NtGrVKrrvvvto+fLltGnTJsrLy0vpWKZPn05NTU2UlZXltN/y5cvp3nvv7XRiaGpqooyMnvG4VlZW0gsvvECbNm2iCRMmqL+vXr2aMjIyaOfOnbR7924aMmQIazu2b6r47LPP6Mwzz6Tc3Fz60Y9+RMOHD6e9e/fSunXr6LbbbqObbrpJbfvyyy+zfauqquimm26i4cOH08SJE1M2ZtD99IxvGQjM3Llz6YwzziAioh//+MdUWlpKd9xxBz3zzDP0ve99r9N9GhoaKD8/P/SxpKWlUU5OTqh9ht1fEI79sK9atUqbFObNm0evvfYarVq1ii6++GLVtmrVKiotLaWxY8embJx33nkn1dfX04YNG7S3l+rqama7TuDg+AXuo+OUs88+m4iItm3bRkRECxcupIKCAtq6dSvNmzePCgsL6Qc/+AEREUWjUVq6dCmNHz+ecnJyaMCAAXTppZfSoUOHWJ+e59HixYtpyJAhlJeXR7NmzaLNmzdrx44XU1i7dq1yveTn59Opp55Kd911lxrfvffeS0TE3GHH6CymsH79epo7dy4VFRVRQUEBzZ49m95++222zTH32urVq+lf//VfqaysjPLz8+nCCy+kmpoatu3hw4fp448/psOHDxuv7aRJkygrK0v97/8Yq1evpunTp9OkSZNYWzQapbfffpumTJmizqm2tpauueYaGjp0KGVnZ9OoUaPotttuo2g02ukx77zzTiovL6fc3FyaMWMGbdq0yThGIqKtW7fSkCFDOnVn9e/fn9n+mMKKFSvozDPPJCKiRYsWqXvx8MMPq+3Xrl1LX/va16hPnz6Ul5dHM2bM0K4H6J3gTeE4ZevWrUREVFpaqv7W3t5O5513HlVWVtKSJUuUW+nSSy+lhx9+mBYtWkRXXXUVbdu2je655x5av349rV69mjIzM4mI6Ne//jUtXryY5s2bR/PmzaN169bRueeeS62trdbxvPLKK3T++efToEGD6Oqrr6aBAwfSRx99RM899xxdffXVdOmll1JVVRW98sor9Oijj1r727x5M02bNo2Kiorouuuuo8zMTHrggQdo5syZ9MYbb9DkyZPZ9ldeeSWVlJTQDTfcQNu3b6elS5fSFVdcQU888YTa5qmnnqJFixbRsmXLWOBckpOTQxUVFbRq1Sr1t127dtGuXbtoypQpVFtbS88//7xq++CDD6iurk69YTQ2NtKMGTNoz549dOmll9KwYcPorbfeouuvv5727t1LS5cuZcd75JFH6MiRI3T55ZdTc3Mz3XXXXXT22WfTBx98QAMGDIg7zvLycnr11VfptddeU/9JSISxY8fSzTffTL/+9a/pkksuoWnTphER0ZQpU4joaHxk7ty5VFFRQTfccAOlpaXRsmXL6Oyzz6aVK1fSpEmTEj4W6IF4oFezbNkyj4i8V1991aupqfF27drl/dd//ZdXWlrq5ebmert37/Y8z/MWLFjgEZH3y1/+ku2/cuVKj4i8xx57jP39xRdfZH+vrq72srKyvK9//eteNBpV2/3qV7/yiMhbsGCB+tvrr7/uEZH3+uuve57nee3t7d6IESO88vJy79ChQ+w4/r4uv/xyL94jSUTeDTfcoOz58+d7WVlZ3tatW9XfqqqqvMLCQm/69Ona9TnnnHPYsa699lovPT3dq62t1bZdtmxZp2Pw84tf/MIjInV9H3/8cS8nJ8draWnxli9f7qWnp3t1dXWe53nePffc4xGRt3r1as/zPO+WW27x8vPzvU8//ZT1+ctf/tJLT0/3du7c6Xme523bts0jInYfPc/z1q5d6xGRd+211xrHuGnTJi83N9cjIm/ixIne1Vdf7T399NNeQ0ODtu2MGTO8GTNmKPvdd9/t9FpEo1Fv9OjR3nnnnceuZ2NjozdixAhvzpw5lisHejpwHx0nnHPOOVRWVkZDhw6liy++mAoKCuipp56iE044gW132WWXMfvJJ5+kPn360Jw5c2j//v3qX0VFBRUUFNDrr79ORESvvvoqtba20pVXXsncOtdcc411bOvXr6dt27bRNddcQ8XFxazN31eidHR00Msvv0zz58+nE088Uf190KBB9P3vf59WrVpFdXV1bJ9LLrmEHWvatGnU0dFBO3bsUH9buHAheZ5nfEs4xrH/9a9cuZKIjrqOKioqKCsri8466yzlMjrWlpOTo2I+Tz75JE2bNo1KSkrYNT/nnHOoo6OD3nzzTXas+fPns/s4adIkmjx5Mi1fvtw4xvHjx9OGDRvohz/8IW3fvp3uuusumj9/Pg0YMID+8Ic/WM+xMzZs2EBbtmyh73//+3TgwAE19oaGBpo9eza9+eabcV1goHcA99Fxwr333ktjxoyhjIwMGjBgAJ100kmUlsbn/IyMDJYRQ0S0ZcsWOnz4sOZjPsaxgOSxH8/Ro0ez9rKyMiopKTGO7Zgr65RTTkn8hAzU1NRQY2MjnXTSSVrb2LFjKRqN0q5du2j8+PHq78OGDWPbHRuzjJskytSpU1Ws4uKLL6bVq1fTnDlziIiouLiYxo0bp/62evVqOvPMM1Uwd8uWLbRx40YqKyvrtG8ZBJbXnIhozJgx9Je//MU6zjFjxtCjjz5KHR0d9OGHH9Jzzz1Hv/3tb+mSSy6hESNG0DnnnON03lu2bCEiogULFsTd5vDhw9ZnAvRcMCkcJ0yaNEn9TzQe2dnZ2kQRjUapf//+9Nhjj3W6T7wfrt5Genp6p3/3uliNtrS0lE4++WRatWoV1dfX08aNG1nu/5QpU2jVqlW0e/du2rlzpwrqEx295nPmzKHrrruu077HjBnTpTGZSE9PpwkTJtCECRPorLPOolmzZtFjjz3mPCkcewu4/fbb46aqFhQUBB0u6EYwKXzJGTlyJL366qs0depUys3NjbvdsQyWLVu2MJdNTU2N9X/bI0eOJCKiTZs2GX+EEnUllZWVUV5eHn3yySda28cff0xpaWk0dOjQhPoKQmVlJf3pT3+il19+mTo6OlQglujopPD444+rDCz/+oSRI0dSfX19wj/Ix/537ufTTz+l4cOHd2ncx/7zsHfv3rjbxLsXx+5lUVGR84QCegeIKXzJueiii6ijo4NuueUWra29vZ1qa2uJ6GjMIjMzk+6++272v2uZKdMZp59+Oo0YMYKWLl2q+juGv69jaybkNpL09HQ699xz6ZlnnqHt27erv+/bt4/+/Oc/U2VlJRUVFVnHJUk0JfUYlZWV1NHRQUuWLKHRo0ezt6opU6ZQfX09/f73v6e0tDQ2YVx00UW0Zs0aeumll7Q+a2trqb29nf3t6aefpj179ij7nXfeobVr19LcuXON41u5ciW1tbVpfz8Wi+jM/XaMePeioqKCRo4cSUuWLKH6+nptP5nmC3ofeFP4kjNjxgy69NJL6dZbb6UNGzbQueeeS5mZmbRlyxZ68skn6a677qLvfOc7VFZWRj//+c/p1ltvpfPPP5/mzZtH69evpxdeeIH69etnPEZaWhrdd9999I1vfIMmTpxIixYtokGDBtHHH39MmzdvVj+OFRUVRER01VVX0XnnnUfp6elsAZifxYsX0yuvvEKVlZX005/+lDIyMuiBBx6glpYW+u1vf9ula5FoSuoxjv3vf82aNdr2Y8aMoX79+tGaNWtowoQJLMD+i1/8gp599lk6//zzaeHChVRRUUENDQ30wQcf0F//+lfavn07u6ajRo2iyspKuuyyy6ilpYWWLl1KpaWlcd1Px7jtttvovffeo29961t06qmnEhHRunXr6JFHHqG+ffsakwRGjhxJxcXFdP/991NhYSHl5+fT5MmTacSIEfTQQw/R3Llzafz48bRo0SI64YQTaM+ePfT6669TUVER/f3vf7deO9CD6d7kJxCUY2mU7777rnG7BQsWePn5+XHbH3zwQa+iosLLzc31CgsLvQkTJnjXXXedV1VVpbbp6OjwbrrpJm/QoEFebm6uN3PmTG/Tpk1eeXm5MSX1GKtWrfLmzJnjFRYWevn5+d6pp57q3X333aq9vb3du/LKK72ysjIvEomw9FQSKame53nr1q3zzjvvPK+goMDLy8vzZs2a5b311lsJXZ/OxuiSknqMwYMHe0TkPfjgg1rbBRdc4BGRd9lll2ltR44c8a6//npv1KhRXlZWltevXz9vypQp3pIlS7zW1lbP82Ipqbfffrv3u9/9zhs6dKiXnZ3tTZs2zXv//fetY1u9erV3+eWXe6eccorXp08fLzMz0xs2bJi3cOFClsrreXpKqud53jPPPOONGzfOy8jI0K7L+vXrvW9961teaWmpl52d7ZWXl3sXXXSR949//COBqwZ6MhHP62KkDQAAwHEHYgoAAAAUmBQAAAAoMCkAAABQYFIAAACgwKQAAABAgUkBAACAIuHFawcO7Ge2vgqe/8Et09W8rVxyL/v2t8vDdkWFU/QQcP9UIa+JqZUoLS0St9Hzwj5nL87nrmAbm6nddmy38zY9W6ZntDeRyoz1sK+Rf+y235AvC4kIFeJNAQAAgAKTAgAAAAUmBQAAAAoHQTzpgxM+Ogdfsebvtuzq4v/T3ZKufmQXv6b5mrhjGqurD9Q8Fv8lTb63O5lHkNfF5TrJcdniAImfR2+NIUh683mYxu56Xl+mGATeFAAAACgwKQAAAFBgUgAAAKAIr8iOMS9bJsKbfbVHpfTjt4fr30tlX93nn43IY/vugfsVcD3PZPpjXY4VZI1DZ333Xn87cOPLtM4BbwoAAAAUmBQAAAAoMCkAAABQOMQUzP7TSMRhfolI083Xa84xtvmYg/qFXbR1XH3rQfyUNn2oxPe16SildNmBbNba4z8bdv2hMNeVIL7wZcJlnYOrDlageIXouytPJd4UAAAAKDApAAAAUISXkhoqYb6KJ1OKwi21Vpf1prjtegqceV9tlJocdvxtZV9a32lBr5lp/6h5Uy/N2Gw8atI9OnAZATuukhqBXFNOR+ocvCkAAABQYFIAAACgwKQAAABAkXBMoWdJ6JriBGHHEOKna+pyHJaeLEMxS/06HUpPEXbJxrSNU9hBxD087f8lIsagBUNcpSgAOH5Jxu8y3hQAAAAoMCkAAABQYFIAAACgSNE6hWTrJHTdj+zuk3ORuXDty0X22eJrl6bT9G8+lj5KueAi8a619RhROdBkSoPYCCpbYsLxfjod1yx1oB0pibLQQXzeNnmIIONMqtRELwdvCgAAABSYFAAAACgwKQAAAFA4xBRSWVIxxJ4D5/G6rIkIiqlv1zURXR+bJ33SsnyqY1VLpumkDcus3aKfhYufP+iaBpdnJ4UlSrWupOaWZX/bPTDsr2twdV88IohGUK+OGbj8BHXh5w9vCgAAABSYFAAAACgwKQAAAFCEuE7BJa/aTc/G7h9PpS5TKvPiE8deA0H4jX1+aC2GoHVuObj0M1s2N+2r41pe1dTmGAxxImgZ2CAxB+kvt32fHLrW9g3Pz9+TSGZspJODmdtdjh3k6xEHvCkAAABQYFIAAACgwKQAAABAEWJMwcV/K9u4hn53+iXDVLexE793uzKOxbcblX/ouj6R7SIk926FeQfctIxsdbJNCeN6/W1zIWxr2MbfvUOt76PtQXSWvhykUmfJ1pe2vWnjJMQ+8KYAAABAgUkBAACAApMCAAAAReI1moVtXTng20H3p0qz5/g0u1MRJUDZ5ASQZxb7/0BEtlny3FNJcrV1bFuY/cy83eyn148VpL63eY2D/bx6zv1NFbbnKJXrL5LZl10rzA7eFAAAACgwKQAAAFAk7D7SpBAc3oD016Ww12b3TJkL/RqF+drIbelV8WSar+YSisT57H7scJGlP6W0dtfdSeHLqLPeA/Zto+v3C+j0JjkOl5Hq27qfJ94UAAAAKDApAAAAUGBSAAAAoEg8JdW5xp+LlHZ4ksbu6XhB4heplPS2LI3XjhXefO+autlJDy5Hc9i2d/mGzSRT1hv0ZFzTY5MN3hQAAAAoMCkAAABQYFIAAACgcJDOdvW9+7d3i0fYl6TLuczlWJIgMYbk+f5s6xCcqztKDPn97j7NJF4HuS6hW4VIwsT5hjlsC3oTrt838zfAvK4nEfCmAAAAQIFJAQAAgAKTAgAAAEWI5Tglpnx+mz9V6iy55HBrdSgt+5r6Copr/nEAP79st5TfZNLmqa1BGgh7icwgg3cWiA/xWGFvb+gpoIx0EExaVcmUST+esIh8B+4fbwoAAAAUmBQAAAAoMCkAAABQhBhTcCkm2fXaDO7jCJrQbyKozzlEn6m2jsEhm1kEFWTtDEkkEt64db9xd/razX3rlzT+sW3rTKzrUIz9hevzT6XWTnfr+gA7eFMAAACgwKQAAABAgUkBAACAossxhZ7rGwyiKeO6vU2zydJVIGx+f3M7H5tbHMazLGww+ebdr4nbDm7PZZh92+6Hre+gsZXjj570G2Nby3E8ranAmwIAAAAFJgUAAAAKTAoAAAAUIdZoDpNU+leD+IJNdR3see9mX745sT34FQlzfYbtfsXa3R8j1x1QdwCEj+33z9Te2+INeFMAAACgwKQAAABAkUTp7CCkzn3k7s5wmUfDk2zQHDIiLVQ/D34Nw32FtR07SFpomNIgyZYhMe3vel5wdR2vOJfbtHxXnVxVXXis8KYAAABAgUkBAACAApMCAAAARQ+JKdh8t8ksi+iKKeUxmTLOsl3GDNxKnLrJdUSN7cH+b5FCeXHncps2UvMsgC8Xdoka33OXhK8P3hQAAAAoMCkAAABQYFIAAACg6KaYgqujK3EZBT2H3mVfV5KXi24r36j1rJ2nWYKDjyWY7DNR1NLuH0vY8aEgvvugfn/EDYAdm+x2ECJS1j6EGBzeFAAAACgwKQAAAFBgUgAAAKBIWkzB7+kKXzg2vn9c963b9g2TMDWbgsY+XLYP6uMUPlNDu/R5av5V4X+1n4Xpmlv21i7xl0Wmuyet+zn+CRpDMMUkkiHLjTcFAAAACkwKAAAAFJgUAAAAKEKLKSS+ckDH3SsWdmnKruLq97eV6/Rt6Vrx0nKsVObzm66C3b9qiwOYYxC82fGcLZub3beJ39vODya1rAx7mi8BSAK2tQb+dlNbIu2uYwkbvCkAAABQYFIAAACgwKQAAABAkXBMweY9D+Llcna/phBzrMTxrB3Ow15z2bZ/MvX93fLcpTqLC1LbRd8gdQ9HuIey1eENr69gBI0Idl1zK+ix9Boj4WHy69t8/smOCQQFbwoAAAAUmBQAAAAoupySanMnhfviFqbUrBknx4jlHT/c4o9SEjx57iD3ri2uLZf+UugOcifI2MIs/ZlKAudGW/YPb1/dK2OSdEf51HjgTQEAAIACkwIAAAAFJgUAAACKpMlcBOvMrTeXrW0eUWtBTb9sreu+lrG47O1paZ+uqYHxl+W74lo6lG0r+wo0kmQTQKY7iaPoWUdw2TfYmQRL7XSVD3f5foVXltd+7PBjIXhTAAAAoMCkAAAAQIFJAQAAgCJp5ThdCDfn3nKsBP5iajZ598L19Zrn67RQhUaCIe9fEBn14wdXn7RNSjvMyJlsdS2B2vWtzV0FGUfgg1vsIH2JVmsMTt77xO9nUFluIrwpAAAA8IFJAQAAgAKTAgAAAEWPiCl0L8lVbQoPVw2axP2zQc84zKzsZF798H3UQSJMySyPGkzhq3tWX/T0NSrhEYmYYwZBZO89T+o9uT9neFMAAACgwKQAAABAgUkBAACAoltiCqlcl+CKy9CS6wO1xBCsAzWvHQgyFmuJzC8hrvngttundxdeLQeniIMtqT6I/pBc3xJCjn1vxP57aIgfRmSLvIbu48GbAgAAAAUmBQAAAApMCgAAABTh1VPooXGCZI4rqLqNmQBFChzRez4+fbna/bJo7VifHd/+zur7Fmev5hsO8Z4E6ilMP7/1GojNwztySgkeG5GxF1/fSVhnhTcFAAAACkwKAAAAFJgUAAAAKI577SO7rkh4JDWq4hlNqya7ma5rrRw9Nt8+KysrbntHRwdrS0vj/y+R9ysajTrZQXCJIWhNrsdy3L73etTDI7yVGt1L8N+giO+TJS7ThUPhTQEAAIACkwIAAABFaO6jVLppXEhLS2d2Rka6aOfzohx3e1sbszt87oqwl+G7yFtrr43WfNj498M1lVZeo7a2VmavWLGC2e+99576vGPHTtb2ldNPZ/boUaOYPWTICczu378/swsKC5mdkR67v9K1pKWgClu6toI44CTuT4r8PiXeWahPZZiyFt1Id6a3hukuOoqLZDukswEAAAQAkwIAAAAFJgUAAACK407mIjs7m9k11fuY/fHHnzD78OE6Zh+pr2d2RcUZzB40aID6nJuXx9qyMjOZbfNZS9vsr3WVZpYyCaauzX3L1qwsfp4PL/sjs5f87i5mH66LXeNhw4axtv79y5j9pohHHKo9xOz0dP7Ilon9Tz7pZPX5K1/5Ct+2rB+zC0U8YsiQIcyWz1JHezuz24XtJ3TxAYfb73osp7EeJ/LW4ceAkklqR4M3BQAAAApMCgAAABSYFAAAACh65ToFXVYh5uN+7913WNvixYuZvWHjJma3Cb+wPI8hQ4Yyu+L0iepztpBzGDBoELPHjRvP7PHjx/G+T+A+7NzcHPVZxhuk/9rZlxvA9yvXctQe4n7+Fa+vYLa8pv44gIzhzJg5i9m/+c1vmL23qorZu/fsZvbnn29l9rr31qvP9933e9ZWXV3NbPkcneSLRxARTZtWyezKSm6PGDFCfZZrIkzxhp5GkG/q8VpCs3fFHMIFbwoAAAAUmBQAAAAoMCkAAABQRLwEnYCHaw+Gd1DHeIPcvrmpkdkvv/iC+nzH0qWsbduOPcyW/nHbseTV+clPfqI+X3zRt1jbhg3rmf3+++8ze8eOHczOyubrHCaceqr6LP3XMh5RJHLspQ87TJ92Tk4Osx/5j2XMvvPOf2e2fKD2Vdeoz21CS6qsjK8zeOCBB5g9a+Z0Zre2cp2l9HSuZeV/nJvEc7JrJ9dd+uijj5i9Zs3bzH5z5Upmd3TwuMGCBQvU53nz5rK2E07gmk1hSnz3ZI6XmEKYBL4mJt0yW0lTsW+fPiXWw+FNAQAAgAKTAgAAAAUmBQAAAIpeEVOQcYCGep7rfs1VV6rPa//J/fqHavm2tmNHImKeFJtnZsTWRCz53R2s7Yc/+B6zW5u5T/vgIX4NN2/6gNkrV65Sn9ev38CHIXznZ501hdnnf/3rzB41aiSzZYzB5OOW11vGcC666CJmb/7oU2YXFxfH7e/w4cOsraGhgdkDBw5k9v3387UGlVOn8rE1N1M85L2W8YeMDL5MR573rp08BvTkk08y+5FHH1OfiwoLWNt9993H7FGjRzO7N61jCAJiDAkg63zYtneorSHpU9zXug3eFAAAACgwKQAAAFBgUgAAAKAITfvIBdfcWun/LigsYvYJg2OaQ5kZ3E8v97XHM/j20g/d3h7Ls7/llptZm/TjV0ycwOxCMe7KaTOYPX1GTAeo7nAta1u/fh2zn376aWb/9KeXMXvOuV9j9k9+/C9iLDEfuNRZyhKaTq+98hKzP9u6jdly7cG+fbyGRV5efuxzbp5oy2X2kSNHmH31Vdcw+3d38DjO5Em83oX/2ZKPmRyn9OvLY1f71lcQERUU9mG2vx5D3748/zsvP5/ZXxbf+pflPDX8z51osv3mOF+xJF9ivCkAAABQYFIAAACgwKQAAABA0S3rFGzYfHBSi+fhh+5Xn++57w+sreoL7t9uFX5l6Z+Tx45EeEwhPcM/j/KdTxl/KrOXidrFg331nYl0Hzc7rsiZ96+POHpoHvtYv/49Zv/+3nuZPbT8RGb/7Gc/U59lLeL29hZmX/rjHzN79dp/Mru+ga9jaG/nMQr/IyZjNNnZPH4ha1TIxzNf+OqHDeX1LvwxitYWrpMk6zzImsvyfsixlQ8vZ/bs2Wf7Ps9mbUVFPP6g1ePuwfivudUffpzGEI7X88I6BQAAAE5gUgAAAKDolpTUoMg00xOHD1Of+/ctZm01+w8wu1m4FGxS2RGRour5PA4ZGXxO3bhxA7P/7d+uZ/b993GXTl4ed4P5UyQ9cY6trdylI8c9afJZzD755LHMvv76XzG7pma/+jxqFHctvfg8T0F99z0uHZIhXFla2m4bd5X4R9rRwV00DQ3chdPY2CT65te4vr6e2Xv37mX27LNjab3XXHMVa8vM5OOWMhd9+/JXaynr3UfId/jPW0p69yZ3kYnj1Y1yvJ5XGOBNAQAAgAKTAgAAAAUmBQAAAIpeEVOQ6Zn1dbXM/uvfnlKfhwwdwtryCngK4+q1PHXT82RMgfsapW/Y82J2ezvfVvq/X36Z++Yvu/wKZt91J5dsGDAg5sOWx5UxBCnR8OmnW5j90B94au6eqipml/hkGdpEvOJvf/sbs5tb+bHSRAwhK4v76luEf52HZWTKr9m3q18HuQX/w2sr3lCfS/qWsrbf3vZ/mV1SUsxsW1xApqz6t9djU/y8XOXiTcAf7k53XrNkPgvJAG8KAAAAFJgUAAAAKDApAAAAUPTImIL0wWVncrmBp59/ltlvrn5bfW5q5X7gU8ePYXap8CO3iJx6WZLRE3IS0Wh836TNb7nyzRXM/tef/ZzZs2fNVJ/r6njZyhaxvmLT5k3M3rz5Q2Z/ZeJpzF5y++3MLu4Tk/HesX0ra1v/Ppcf1/zlYg1FehqPMUhJjrbWmC8+IqRBPFnv1KIL7EVlTIK3R33368+P/5m17ROSJw8+eD+zZYzBVLJUG5fl3rv6tG0xCmAnldfM5Vg9PcaANwUAAAAKTAoAAAAUmBQAAAAoeqR0ttTSOVjzBbMXLVrE7B17Yr7iQ4dqWVuRr+wkEVFDYwOzW0QOfrqIKcgYQyTN5//TdJIEUoZb9CWlm/3nPW3qFNY2aOBAZg8r5zLOlZVTmT1x4kTjWPzHevnF51nbTy+/mtleRIxbW7vBL4SMuzQ1xqS1PS2EIGMMYthkI36MQfpqW1r4eowrr+TrRn6z+BZmNzc3W48Oeg49NYYQFFPMwRafkO3FJXztTmfgTQEAAIACkwIAAAAFJgUAAACKHrlOIVPo3P/3X59k9rYdu5mdnhFbxyD93dW+ugFEerxC0i5y06PSy+0zrf5urbQnt9MMvvqRY05mbbfdupiPU+jwtFt0eqRvMcN3HT7Y+D5raxWxDlk/webHzMzk17glI2ZHoyIeIa5iWgJRBE7ivt0sUerzhRdeYPZVIsZQUlLCbJd1C70b0zVNXU69q788laRyLEHWQHQFvCkAAABQYFIAAACgwKQAAABA0eWYglbL2MnVKHyFQjunru4Qs1/5xz+YnSG0kPx1l6XfV8YQXHVG5Kyp5dn7+7a48/Rd4+sAPfroo6xt/jcvYPZXTpvA7FYRQ7AR9d3A6uoaPg5t3YGrL134W+N8JiJKEzUoREls8sQeadr9M8dtTMjz/nzbNmZPFjWaZb2F44fuiSG4+r97tv5T7DrJR7Bnj1sHbwoAAAAUmBQAAAAoMCkAAABQJBxTkHUF9Pb4uvg2r2R6Gt9i7+6dzN5TtZfZUo/Ir1HjRWW8wpJPrDkA5ehEHr3v0JqrMCJNi787En+ssp7CM88+x+yK0yfyvhxjCv6h9PHVViAi8uRaAhHzkTEGmx/fHwfwIumiTawbSRPxDBnfsOSup6fHHuk0+V8eMcz2Nr4eo3pftejLvKbFRND6CVq8iZm2Otfm++E2tt7lD+8uTF8B1zhmmDGIrtRqwJsCAAAABSYFAAAACoeUVOk+ciijaJGYThOvS60tXLJYuis6hHujpS2WKmiVZtY8OJYURzIgFTAsx5JuMk2W29ecIVwXH364mdl6eqTJ3aDjl7eWMtsy7VO6bLTztNj+87TJbutSIOb7I8/b/6xEhGsqJzub2Rm5/PpvEympTU38OZQyGe0+ORB5Xq4Ecenou9r6ciuB6jIWtxRWua9rXz0nXTZMwpTQ6Mq+eFMAAACgwKQAAABAgUkBAACAIuGYQkTKD8g0OKObMr7sARFRh4gZlPbj8gJFBbykZn21KA1q8JvpLVreKEMrx5luKKFpkcbWxmJLd/UdS6bWZmTI9Ejpd9SOZhyLX1p78lm89Oe4sWOYvXHzp/zIFp+nKU1Upi5nCJn0NJH+KuMuEmOqtBhHdnYOs088cTiz16x5m9lbP+cxhqlT+HWaOvUs9XnQoEFiXPyatLe7pQwnl1TGEGxxA8Oeni31WcZWDGnxeq1ci62NxmK79GU5kjUOkFz5crwpAAAAUGBSAAAAoMCkAAAAQNFl6WwZUjC5wbT4g0DmePfvz/2zp00Yx+wdL74uBuOXrTXHL2QJTOmz9vu/iXRfvr80pZRJsElOy7FF5Fh8efXRCO97zOjRYhx83/Z2m7w1H1uHb/vSvv1Y26Qzz2D2+o0fimOby3NqpT991zgvn8eHsjJ5Xzk53O+fnc3XBqSLGE9UPDv+uIyUqSjIz2f20CFDmF1a2pfZR44cYfazf3+W2c89/7z6PPG001jb2WfPYvbJJ5/EbHleevlUuZ6DkkZXpBBimH3tYeb72/syxBatw+h639ZtLdI67pIo/u9A+PEFvCkAAABQYFIAAACgwKQAAABA0eWYgsRFTUWPRwjfeybXqPnud7/D7H+88RazjzQ2qc9aeUfNnWfWH9L1iLjt94FnZZr9wtKWZAp/uj9nPyuT35rZs7mPukPmvcv4hTiWLhnuHyfXUara+wWz29u5f1teE5tPuqMjFh9J7+Djbo7y2ElmFj/v9HQeY+jXr5TZebm83R9HkM+VjLvU1PBynIcPc7ny4uJiZpeXDxf9xc7l/Y3vs7a31qxh9rBhw5g9c8Z0Zn/1q5OYXVbG4zz+uJtfcykMelu5yHAIds6BrlnA682f6/D1ofCmAAAAQIFJAQAAgAKTAgAAAIVDOU6zvo3RxyZjCJZjtba0MPuMyWcxe+pXK5j9zAuxdQsyh769w5y/L3PZ08X+sq6Bf3t9X7nGgfcl12PINRE5Pv94jshjL8wvZLYnzkvm61vx3b/GhgbWtKeqitkyziLXX9gPFTuWrJWRnZ3L7Po6vjZAPgutrTwmMWAA18kq7VuiPufk8HUJUtdK3o+mZj62gwe5xtb+/QeYXeDT5Orfvz9rk9ds//79zH7oj39i9hNP/IXZU6dynaXZs89Wn0eOPFEci38XW0WM6LipqGmRWzNt7qXwImgx04BLCcz9hbm+4ih4UwAAAKDApAAAAECBSQEAAICiy+sUXPJ0NX+eZsp4BW9vaeF+5EZRO7ewIOY7bhd1CHKE376lhftbpcZ+rsh7l7ETvz9d+tZzc7h/3Ms268LIWgI5ObH1GTJG8Ls7lzJ76R23MTs7i8cvolHzsf11Cw4d4r7y6uqauNt21pfEpAElr5nMuZfXu6WFH1vWpm6o5zGIQweL1efSUr6moaioiNm5ufx+FRbydhlzaBYxh8bGWCymro6vccgSz1XfkhJmn3QSH9uBA/wevPDiS8x+9dV/qM+njB/P2s6Zcw6zK06fyOz8PH6ebUKzKxqNH4/SniKp3+UaMBR7m3aOyPYA+f2WUgyBJYRc1mW5lsjWhubb3laTvivgTQEAAIACkwIAAAAFJgUAAACKLq9TSGAP3yc3HzQJbZ0D+7mPe/dunkfP1wtw/2im0BCSdnsb93FnZfH1AX4/PxHPCZe+WYleC4D7x3Oyed/Z2bG4gIyjbNu2ldn3P8jz3K+96jJmt7Zy/7fEH87YsZ3XIt5/4BCzI2nStytMyxoWE7ZtZcyho6Ge2XLdQ2NTzM8vtY1kzKCkhNdPKC7uw2xbbYfCwtjaERlvkLGrXXv2MFvWkejXj2sdDR8+gtn7fd+BdRvWs7Z/rlvH7HKhs3TOObOZXTmVr/sp68/XevhjKR0y5hOVfn8LWg2R2GdZh1yixRptx5KH5p2ZCeiK9x9L+vmDhi9Mv72WUjVdAm8KAAAAFJgUAAAAKLqekmopw8fSpiwl+qQt5Qiq93Ep5zpRJtHv0vGi3EXT1NjI7ByRcpqRyY8lUx6Li7nLwZ/62SGkJqQ7KdvgeiIiShepns3NMZeRTN0cOJCXKF2+/HlmnzKelyydOZ3LJEj3hv+WVFfvY03yPLS3V+fygfFfmPUSpWb5FJkm2iJkMNoMstKHDnHZiuqaambni3KdZcKlU1RUzGy/zEVObrZo433liHE1+OTeiYh27trF7MICLmvSxyfjnSlcnA31XKakau9eZi97+D+Y/d9PPc3sr07mst1+We9Ro0aytlzh8pTuJekuior7538O5fVu0+Tgxe+EeIzCdJ24dmVyAQUdl/bbmsTz7gy8KQAAAFBgUgAAAKDApAAAAEDR9ZRU4dgypZ3aYgjS7+gJv36h8M8OFHLJn233pftFzDLPtbVcjkCmAmYJuYiWZu6z9pfg1NNXebwiPz+P2bKsZWMT9ysfrqtTnw8eqmVt5eU8zXDIkCHMvuvf72H2UNF+wiAu7dzkO3b//gNY26QzJjL7w094OmxDA4/TyGtsktZ2SVftbHsZh4mKkpuZGbH20pJi1jbuJC45nSvu1+aPP2P2rl07mZ2RyWMv/phDqXiO+ghJjTwhNSFLsdaLuMARETerr4+l4vYRqbPFQkJD3p+2Vv4MN4tn+rXXVzD7zZUr1efyofy5O/NMLlt/xhlnMFt+l//0x2XM3u27pt+96CLWNuvsmcyW35828bvgkiZvfeq0sr3GZmOaqTYqyzhdvxPJBm8KAAAAFJgUAAAAKDApAAAAUES8BB1zB6v3ir+YYwr+bq0xBYuccksT97e++hLP0f+Px55Un/dW81x0uZbA77cnIirtx6UOsrOE5LGQX87Ljfk5pcy2lLHIFjndUqpZlsH8ojqWN79jx27WlpXF+zr1VC6fXF/HpSlycguYfevim/hYfW7MFuGrPXiQyzhv/vBDZm/avJnZWz/nMhn79vH8f/81l+sKZJxFSn7rTyf/g5SeGDJ4oPp88ujhrG3QQB476VvK4wD5eTx2tbuKS1O8uWotsz/fHvOPFxTwGMKAAQOZ3bcvf87yC7i/PFOUbpXXqcG33kbGBKQEu3/9xNF2IT8uJDjaRPnODJ8UjK2EqYyNyLKjX+zlkjSZvpicvNfjx41l9ne/821mV06vZHZREV/L0SZKtZokwTVZbq2do8dU5QaGtrAJsE6huN8A6zZ4UwAAAKDApAAAAECBSQEAAIAi4ZjCgeoq8ZfE9YxsMQXpp5S21COqO8T9lq+89KL6/Ozyl1nbzj08t7zuCJdezhA+0cEDeT5/h8fnzUGDYr5if3yBSF+nINOPpdaLzE/2+2N37eIxBSlnPWgQ10IaeWI5s/fs5jn248ZPYPY1V16hPnsi179ZXG+pb9Ms/N1H6vk1PSj8ynu/iMWjqqr4c/TFF1zXqrqa73vwID/vBiGdfcop3A89dswY9TlTrDmR2lOZhnKoRESFwjefJu6XX8L6ldfeZG119XwNyuBBfN1ISV8eq8rP5/Gm/Dz+bPnXYzSIWFSTKE8r4zTyPOVzmJXNr5P/q63daxGTq62tFWPhayRMPy9pIl4RFfE/qdg+evQoZl9wwQXMPvdcXpa0tDQWx5FrHGSs0b1cp9DoMgUVLCUzpZaRXmLTMhQD8jRKEFMAAADgAiYFAAAACkwKAAAAFA4xhT3GdpeYgq6VI2MM3Ict1y1oMYba2NqElSvfYG3P/H05szd/zHV8MkR++OBB3OfWJPSJCopiOjOlIve8SOjdSB+1XMcgfap+f2xNjcj3Frn/TU38Ggw5YTCzBw/m57F7N9frP3HkaPX58p/yUp59S7i2jvRZS39sh+V+Rj1/eUfu75Y58lKnR+r4NIj6GHKdgv/YUfEcydhIh9Dvl8+dJ/LcZewl07fYo6aGx66efu4lZn/2Ob/+Q4fxGFBJMdcvSk/nz4Y/J1/GRuT9kesYJBkZ/Jo1i5KmBw/E1qnINSut4v5EhNaYHLd8xv1xNNlm2pZIjzVK33z5cH5Nvz53nvr8zQu+ztrkd7dDW9NgiwuYNzdtKrHFCEz7p1k6R0wBAABAIDApAAAAUGBSAAAAoEhiTMHQJn3OFj3+dkuMwe+XljWZ//lPrlfz/gcfMVvqp2SL3PZPPubbr/3nJvV51OjRrE1qHfXty/3E0kcqNWva2mI+bqmnf+AA13Q6IPL3pR/fv56CiGiAqEFRVxvbPxLhsY75F17I7Emihm9eHl+P0S5qOsv7l54eO095DerFGodPt/CaBhs2vM9seV3mz/8ms/3xEFmXWvqk29t4TKG9XWoC8fbWZum7jz1r7a28rb6e5/M/+9yLzP7gwy3MPnksr7EttZAivmR2qW0ka0q0CG2jQ+JZ+eILuXaH1xjxf3nlMyrjYhKX2gC2etwydihrh8tDyfvtv39XXPYT1nbL4sXMbhe6SVq9aIlWMDrOZwokVeSMVr9ZjKWkFDEFAAAADmBSAAAAoMCkAAAAQJG0mILf52bTPrKvYxAxBpFT7M99l/EGaTcIbRbpo5Z58TX7uFbP3Xf/Xn3OyOG+3dJSHkMoFfo2sqazyT8r/aNynIdErWmp6SRvR0lxMbPLymJjy8zg/zeoF8fqU8xzuitEXd7TTz+d2f1EDYrPPovFCVatXs3a3n3nHWZv376d2c3NfJ2IfFamTJ3G7P/9v36lPhcW8vsjc+yjFs0tLZYl1lS0+O5Ro4hlNTbya1h7kMeEHvnPx5l9oJZvP/Zkrunkj5vJe3tI1PPevYfrZh2p48+KLbblb5fb2mIGepyAhB2/fneTWC8h6yPI9RmyJoI8tv/7Jp/JmTNnMlvWbph4GtcKyxDf1VYRb/KfqKZdJMcpmy3o/XWdvogpAAAAcAGTAgAAAEVo7iOZd2VKSdV2le6jAO6ldukSsMgqyLKHjcK9JNPinvrbE+rz8y9xSY0hQ4cyW5ZgLO7D5SOk+8h/nlrarRiHlKuut8gpy3Q+v8y3THEsKuRpukJ9QJNLlumyUvqgylfWskW4CGQ5R+nKsEkhyPtTUXGm+nzjTTeytn6lxcxuEXIQ2nNnSY32y2bIcbSI50jKXX/yycfMvu+Bh5g9bPiJzPY/Kx9/xNOk5f2QX0b5nEk3i0lewuYukvvK76qpRK2U5W4SrkIppS19UfLY8tnxu49km3Rj5eRw6fJJZ/I07Avnc5nuKVO+yuxc3/epVfzGuEpfay64EFNc4T4CAADgBCYFAAAACkwKAAAAFCHGFOJ7yrQUVC0AYd4+SjKmEN/3q8k4azEGKZHBU8ukn1PGHHbv2qY+33jz/2FtWXncF99XyCFL6QmZosp8ieIaaPLhYtxynPX13Ifd0Mj9tf4UV+kPJ+Fvlb7eViGj0G6RBMjIiPmV09LM/m2JLSVS9uePGY0bdwpru/GmG5g9opzHgGQasEssS6azas+VuIaNIib0xF+eYPbzoqxsiy89U6bW2iSnXa+xvz9bX/KaSNmYwaJsbIMv1lVdzeXgZVqvjOnI+ITN9o/VJlsvkfdPxiQmnnYasxcu+J/qs4w3SOTdsGacyhhD/CarojdkLgAAADiBSQEAAIACkwIAAABFwjGFg9V7mZ3gbke3tbab1ylI/7ps9vs15b4ypmCLMUhffavIq2/x+XPvvfsu1vaWT1abiGjQQB5D6FPM1ynIEoz+HO4W4Tc+UsdlEA7X1Yl2bktJ6iaRN+/3mUq/sLy30m+p+5nN/7dwyXsP4v8m4mOXfuHhw0cw+4Zf/5rZEyZw+Wq5v0meRV5DW4yhpZnfj71VXE7ljjuXMnvD+7FnK80iX237btriBKb7Jfvu14+vxRk/fjyzDx6sZfZnWz9Xnxvq+TNtW3cg211kvG2xENt6GHnepmfjF9dexdoWLVrE7GaxjkGLMVjlxyOdfPr/44i75VFQjhMAAIATmBQAAAAoMCkAAABQZNg36RzN1yjamS1zaTUxD6FpEhH54Jax+CV1xa4UkTncYl9d5Vb6V8WxfKUlp1VOZW1vv8tLR8r4xmEhdy3LJPr1cY4c4TECWWJRrluw+f0l/nZdFyaYT9q0vxavsPiJ5ToE/5oHIl3rqtYnIy01aDZu5Pfn6muvYfayP/2R2cOGDmG2jBP4z8XFT0+kP3cDB/J8/kt+8mNmP/bnx9Tnte+8x9rahEZQeprZ1y4x3S/pey/rxyWox47lEt+ff76D2Tt3ctt/DeVzZyv9afPzS0zrLbRjyb5FX7aYRIcvxtCnKJ+3yedGxvAsz4b+XXZQP+qCUBLeFAAAACgwKQAAAFBgUgAAAKBIPKZg0djQ82N95Ti1snlyX3N2bRrJ+IXUUvLFFLSSfbJrzfnOzAyLf9xvjp9wKmsbNoSvS/h8F1/b0SE0gqTmkCkOINv0HG0356HL2gGJ1J6SMjJybJmZMY0nfx0HIqLMLF5PQfqNpaa+1FlKFzUOCgpi/twj9ULDSdSY2PcFXxtwYD/X4hlePozZ0jdsum42PSKJ9FEPHVbO7AULFqjPI8R6ixVvrmR2VdU+Zks9MBmnkWUuTb76iNh37Tv/ZHajqBuhPwuZcdtsdR8kNv0iU7t2f2RMIWp+dgaU8TVG/7Lof6jPM2fNZm2y1olW/jRdjjPxdT/6L6f4vepCKU+8KQAAAFBgUgAAAKDApAAAAECRcExB8zJacmvNOxu70rSN9LiA7N4/t4mFCtJ3qPUtfPXSJ+eJS+QbXHEJz9meMP5kZn/4yVZmZ2Ty+gmynoJ/7YH060q/r7wI0s8vMflnpT9bbpsr4gBFfYp4ey6vb5ueLtc9xD5Lv7xWJ0LWOhYaULJd1p72a9LIfP08Mc7+ZWXMHjxoMLOlLpbR1+6o2aStDfHpXhERFRTyazzYt//ceeeztgmn8djWB+9vZPbGDz5g9u7dPJZypIHrMLW3x18ZVCU0mrS6yOI8MgxrDVzjLjZc9pf3UtZykOc19awzmH3hN/k9GD36JPW5qYnXzsjJFb+V4rlMl3FQ2w+e4ddWxm+7slABbwoAAAAUmBQAAAAoMCkAAABQOGgfWXymxrLL0kdpjkdoayCk/pDBTab51OS+one5riFKUotHP4LaVtQyvuji7zF77xc8X3z12vXM7jCch55jbc4lt+kPSV9+lm99QLGo89C3L4+VyJiCvMaytnGD8Kk2NcXiAm1aDWy+b7tYdyBjDjJ/XOK/bnJNhLymTc18LPc98BCz/+3n1zI7O4fHgKKGJHBbDr10HGdqzfHXpWTl8NhIQRGPPwwdytc4TP7qWczevXsXs3fu4PpEu3bvVp/37v2CtR04xPW6WpqFJpdYV9Iqnjv/edjqI2gxAksc01TvQj7/kuGiXvesGdOYfZqoyVwiviPt/mdBxNRIalEFjJ3wrhKvvZAoeFMAAACgwKQAAABAkXA5zkM1X9g3ioNL6U6iziQ0hKtEq9aZuFSztKW8tdYu3BX+cp5SmlmWvNy143NmP/DgH5j9zns8VdD/mml76bO5J7JFamBZGX/dLSkuVp+llHmjWNJfL8omymX7zcIN0y5KFfqvoeeZ019ttq1soum62PqS6a7f/va3mf0zIbXtfy5t45ZYn0utvGe0089ERO0d/Hq3tZrlVORzKku3Hj5cqz4fPHiAte3fX8PsA/t5+8EDwj50UPQdk4Q/Us/H0dIi04/Fc6SV2pXXgbuI/J7hgQP7s7bJk3iK6WmnTWR2WX9etrKoiLtY+/Thdn5BgfqcI9x7fmkPIj1NNz3dnJrr+myZ6FtaZt0GbwoAAAAUmBQAAAAoMCkAAABQhBZTcI0buODSt81XK+MTWoKj3N7g25XpkjK9srGR+96/qNrN7KefeorZr735lvp8pIH3pcntCr9iq/Dj5+XxkoBSJcMfB5DnoUtEk7DNMt6m1EJbKq3N728ri5joOBI5lrwuP/oRL5G5aOEP4x47qGSD6TnW4mBRSzxC2u38/rZJSXdfrKytRcqO8OeyuUk+8zxO0CDiUXVHYna9KDnb0MBjG/L7I2NXbYbYFRFRkS9Vt1zIjfcv4zGGQhEzKBIxg4L8Ambn5PJ05+zsmJ0p5Gz0sqLE7STGEOS+JX37WffBmwIAAAAFJgUAAAAKTAoAAAAUCccUDlbz0pI2WYUwCRJTsLVrayJEHr3szu+3jEalDDS3W4Xss/S3HhI54BvWv6c+r3jjDdb20Sd8zcP+g7Vi5FKa2ezn5xLG5rxp6avVZb0TXytgI0z5ZFtMwVRqlUhfh1KQn8fsxx/7T/W5rD/3UduuURDscTPL9jIGIZ55vwy7tk5HPPNyzYT+nRCyJT6pc3l99XUKQiZdrFvoiJqlK/xxOOnnz8vjawmkrHq2WGsg1/3ItQf+Z01KtstSn2kRt7iaCdfvC2IKAAAAnMCkAAAAQIFJAQAAgMJBOpuTzBiCxEVHxtknrdX+5POkJ/x/af55VJZYjJhz6qWvMUNI7E6eUqk+jxg5irV9uHkzs99as4bZ23bwNRB1R3iOtyzXyXyghnhDZ+3ykslSoS7xJlu8QuKiCyP7lto40t8dEd74EiEpfuE3v8HswsJY7nqHkPyWcRpJmLno1jiavoPJ5Gt59J2Nx3aJZ5hiGUdtc7xCbq9fhtgf5P2wxdzkuiC5v3zm/XZE+x3go0qLmP8vHjSuFhS8KQAAAFBgUgAAAKDApAAAAEDR5ZhCMpFVDs2lPoW2juxL39poSsdkRKvnGbO1sqCaL1Hm7ws/pfBbZmbFcqlzc3hOfEkJzy8+6eRxzN65czuzP/30U2Zv2bKV2Xv2xkqF1jfw9RNy3DIn2xZDMKH5r7U6AtJPbPY7yzvu9wXn5fLc8sED+TUcNnQIs8eMHsPs8ePHM3uUaPfHKNLFuOzVOJOnbyPRYg5J9Fnr0Y34X15rrENrtsQxTc023StH/SHdjt9mo7tjCBK8KQAAAFBgUgAAAKDApAAAAECReEzB4veSOd6mKsM2X6LNw2Zq19tEzrylc82/ZzotqW8jO5e1ANK4fzxNaAyl+7VahNZKbh6PMfTx1VgmIho4aBCzx5w0ltn79u1j9u7dO9XnXTt3srY9e6qYXV3DNZoO1R5mdmu7TQ8nvrM3Q1yDzCwev8gXOvbFRYXMLu1bwuz+ZbG4gayzW1bGYwolfXnd6j59eF99irkdJelHTvN9DlcTP0w/c0/zWYeFy1qpsK9/MmNA3Q3eFAAAACgwKQAAAFCEVo7TBVeBDD1rVKbYGY5l8WrZxmK+PFLOwa0vU7ql3FaWyJS2lGxos8h21/lKIR48eIi1Hdxfw+waYe+v3ifa9zP78GHuXvKfV66QKM4XctQFBdxdlC/sgoJCYRdxu7Cw089EeklF2Xd+Pi9hmi9cdnLsfjlll5KkXbF7C9057mS6k4LQk+4lpLMBAAA4gUkBAACAApMCAAAARUpiCoknq3Zte9O+mtSvQ1+db++T1LB2ZpP2FVt7/piCbLXJDEtbxiBEzKEtVtpQlkGU8YcjR44Y7YaGemY3N/P+5LH9ZGTwFNSs7Bxm5+RwW8p/5OSK7X1+/xyR1quXVMwSNh9LRoZMGRZxA5+cslaS1DFGkFKZixD7Tiaux06lnL+ESe3IFHvEFAAAAPRWMCkAAABQYFIAAACg6JZ1CjbCjSm4bm8rbegfjbaCwmK7rWvg21rGpa2BSFySOipkKeQaiLb2Nma3tgm7tZVvL9o7fGUVpQx6mpbfz5VXZMxBllGUZRP9tr52QEqZm8unaiUXtfb4/6dKZgyhOwlz3K4xgOPl2N0JYgoAAACcwKQAAABAgUkBAACAIiXlOIPECJz7t7j5rWskrBLhXS89GREOddmXZ+g7aC56mlY7NOZv9zLM8Yhsj+f3a2siZDxDrJHwN5tKqR61ZbutxGn89QD2vkW7Jo1t3j7RttQT7BuXqnPRVOoDLzNI/LzlObrG7HrW/Y5PV9Zu4E0BAACAApMCAAAABSYFAAAAipTEFFy9b2F662SFzHDVUcy9Wf2OFp+2y7Glr13b2sG3aN1WxhBkM2WKPxj6s8ZwzNub2mVbd5bEdD2Wfg9YHVjRJmNVNr2vnlK7QY4jamx3x/Dc6TWBE9+XiDytrm/8WFZQTPGMZOg94U0BAACAApMCAAAABSYFAAAAipTEFFKKtjbA2Bz8AOxY0i/cdR+2zVfoGkNw8XP2lhzszui5tXfF/bQ8G3rf/lob0vduPJL2F71ruV7G822bymchlZVWuK0t45Fba78j8ftz/d67nrdL3fiugDcFAAAACkwKAAAAFJgUAAAAKI6LmALL4LZpH1liDNpaAaOLznwwuzs2/v5Bfbm9OS4QhO47b7c8d7vrN7z8c+sl0TS5UoXtHG2+dPN31bSyw1YJxRX/JfRk0RAr3VdbujPwpgAAAECBSQEAAIDiuHAf+ZFvbrbsMP01UnYgtmepoPGXuneOfE0Me1l/crBJMHx5XFWm13yLC0bzX9hyIIXp6zD86534eek4jsX37Ohpna6Yv6tMesImW+HiNbbg+hsULsFdUXhTAAAAoMCkAAAAQIFJAQAAgCLhmIJVojWQ38xxZ1M+WUBZC7u/1nAwZ3qGL74nS0p3LzaJasOmrl0L5BWWJU+N+6b0/kgHeuLjlNIShpBA5+1WfCne8Zs6R8YYHMr6uqa/uo7NH6OAdDYAAICkgkkBAACAApMCAAAARYjrFKQD0MHXpS2zt/hEDXnAruK6mtfYOm5/2T3bOgPniEZI+yaw9ZcmLpA8WHSp6+n6nfTmdvfTLM734OsB/LieaOJ7O/veLcdywTnm4NCXvNeB/yce9XUY+KLp4E0BAACAApMCAAAABSYFAAAAitBiCi7edE1nxNEPZnLHBi2/6aR2rXUuYgzOfvvkSeja9Iv4ts69uw8o7rETH6cdmyS02Y8fpNijfXtLuVXNjsRts6HH6BIfrbW0p2PPLqt8NA0hy/ba/qZxBNTvCvNZ0WMQDmtSAl6jzsCbAgAAAAUmBQAAAApMCgAAABRdjylI36+x3ZKDLf15FkdlmPrkzl25+LgDlA900T/pfIcAvnlLDr0edAjvhoSr5eKW+2+7pOE+dxFhm8cSbrQp8dU7rpUlU7n6xXoWDs+SFmOQ3x+HOKf1Xnpuz2WwYzl2TnhTAAAA4AOTAgAAAAUmBQAAAIouxxT0POv4TjeZAyxnIrNqvbFrKy466J1hOksXP2Nnxzb6sEPUkrdjjnV4ntn/HYrgSlykr9ehtrHj/dFtcxK4pjlkImANYB6hc9MKs601SOLymFCx+ebD1POy3Xsjoa61cSOMuBfeFAAAACgwKQAAAFBgUgAAAKDockxB09wwJDRLn7RrFVNrfQVTV45HdurO4irUZlzb+guHvsNNCBd505agju7LFVsbfKie5vd187e6XBabLkzQOgNOejdabrrtQU2eoH9KHy0HgvreU+m7N5HscRjl10I4NN4UAAAAKDApAAAAUIRYjtOEi6BuIu2GF1xLV2G+GidVIsO6hj9gjqMTtjTQxNP3pGtJT6FzdS/FP3HpHgpdRt2FZLznq57c0idRiLVnYfWuOzSHcW/xpgAAAECBSQEAAIACkwIAAABFAJkLyx8Mzi27C81x2b5vc5vUr6uHOkwBh2SKQVjPO0zZ54DSIQztoljKVDr45uU5W2VHHN38fl9+uGVEU0syn0vjsXrRNQqTqDUFPDxcn2kivCkAAADwgUkBAACAApMCAAAARddlLiztJleWTbJYyiNLSYBAsrY2XJSZLVK9NgnwQBUyXUtNGpObzQPT9rWUYnVKu7ZsrDVrkhqmzjlpSfTdusYQus2Pn8CxjN9dy87WmM/xEkYwPXiOATxdMqgL4zm2b9d3VeBNAQAAgAKTAgAAAAUmBQAAAIrQtI+M+h2OpSWt5QOd9jXj7L7z7WArByj7jgY+eJKw+cMtUsxaTMKwe1AJoCDS2T2JVN76ZK6H0daCOMaIeg0OC6Bs8SWrXL8lDOMk2e6w7THwpgAAAECBSQEAAIACkwIAAABFePUUTGm7wnb1K4bpGrbp3VjH6vcdhu4gDbND84mFWysg8TUTtrUdWtdyf4fz0NbDOOfYJ34sG6lclxAUN5+1eU2RFleLxG/TxhHiF99WQtZaHVULCKYQxxge27QLh8ObAgAAAAUmBQAAAApMCgAAABShxRRMvitnrX+L39joJ3PU0LfsruEfq03byE4KPcuupY+ThLNGkFaK2lFvyr+v4zmnUo/IbftgakbW6+DwX8WI5mtPPDCjxXzEs5FmiU/YMD1rWlMKvw9Ba20ku1YH3hQAAAAoMCkAAABQYFIAAACgSDimIPORbb5dJwLmhxv9/LZDWfSKTPvr6cJBKzyHqWoiawbLZv+Ci66PorORuKwdsF1C27oEPeYQ/1h2AtTOtcbFDAPVN+8k/9+Ea11rM0Fy8q3PjhfX0JC1jIPW1O4uelO9biK8KQAAAPCBSQEAAIAi8ZTUEEvGaThLawc5eNdTGl37ClcYIeD+pmtsW+IvbJP0R2fbszbXS2KT7daey/gOJNfzsDVHTI3avhbZEc2NGb/kqSbZYD50j8LkrNVdiQHceUnGxWWqSbs4+r1SnT6LNwUAAAAKTAoAAAAUmBQAAAAoui5z4eLgi8T3jxJ15o8zb9+dXlRX6WcTtnKeYms5EqdjGd2Y1kxaeT9sPtKul091jVfoQw/x2I7tQXBJW+xNMQQnLL5221cvaKlXF1xShmV8yJr2HqJMN8pxAgAACAQmBQAAAApMCgAAABThleM0Yi4n14PSj60EWbKu5aKbnKQm/YbONrdU7NO6Y4nv5r7tmH2mJj+/qzCIm4yC477AGdfvg1PYzK05pT8kUtbb/4zbJEt6+g8e3hQAAAAoMCkAAABQYFIAAACgiHi9TdcVAABA0sCbAgAAAAUmBQAAAApMCgAAABSYFAAAACgwKQAAAFBgUgAAAKDApAAAAECBSQEAAIACkwIAAADF/wOurWRzJXrX2QAAAABJRU5ErkJggg==" }, "metadata": {}, "output_type": "display_data" } ], - "execution_count": 48 + "execution_count": 21 }, { "metadata": {}, @@ -312,8 +321,8 @@ { "metadata": { "ExecuteTime": { - "end_time": "2024-05-19T22:01:53.589717Z", - "start_time": "2024-05-19T22:01:52.499464Z" + "end_time": "2024-05-20T08:30:01.302156Z", + "start_time": "2024-05-20T08:30:00.369432Z" } }, "cell_type": "code", @@ -327,13 +336,13 @@ ], "id": "2d3a9d77a2537187", "outputs": [], - "execution_count": 49 + "execution_count": 23 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-05-19T22:01:54.066064Z", - "start_time": "2024-05-19T22:01:53.591231Z" + "end_time": "2024-05-20T08:30:02.932149Z", + "start_time": "2024-05-20T08:30:02.607099Z" } }, "cell_type": "code", @@ -369,13 +378,13 @@ ] } ], - "execution_count": 50 + "execution_count": 24 }, { "metadata": { "ExecuteTime": { - "end_time": "2024-05-19T22:01:55.569267Z", - "start_time": "2024-05-19T22:01:54.343317Z" + "end_time": "2024-05-20T08:30:07.152180Z", + "start_time": "2024-05-20T08:30:05.301074Z" } }, "cell_type": "code", @@ -403,7 +412,7 @@ "output_type": "display_data" } ], - "execution_count": 51 + "execution_count": 25 }, { "metadata": {},