diff --git a/docs/src/dist_lsi.rst b/docs/src/dist_lsi.rst index e80ca3809d..15dfb41f9c 100644 --- a/docs/src/dist_lsi.rst +++ b/docs/src/dist_lsi.rst @@ -127,6 +127,7 @@ the corpus iterator with:: >>> id2word = gensim.corpora.Dictionary.load_from_text('wiki_en_wordids.txt') >>> # load corpus iterator >>> mm = gensim.corpora.MmCorpus('wiki_en_tfidf.mm') + >>> # mm = gensim.corpora.MmCorpus('wiki_en_tfidf.mm.bz2') # use this if you compressed the TFIDF output >>> print(mm) MmCorpus(3199665 documents, 100000 features, 495547400 non-zero entries) diff --git a/docs/src/wiki.rst b/docs/src/wiki.rst index 47aeaa34fd..2992cf8401 100644 --- a/docs/src/wiki.rst +++ b/docs/src/wiki.rst @@ -45,6 +45,7 @@ First let's load the corpus iterator and dictionary, created in the second step >>> id2word = gensim.corpora.Dictionary.load_from_text('wiki_en_wordids.txt') >>> # load corpus iterator >>> mm = gensim.corpora.MmCorpus('wiki_en_tfidf.mm') + >>> # mm = gensim.corpora.MmCorpus('wiki_en_tfidf.mm.bz2') # use this if you compressed the TFIDF output (recommended) >>> print(mm) MmCorpus(3931787 documents, 100000 features, 756379027 non-zero entries) @@ -99,6 +100,7 @@ As with Latent Semantic Analysis above, first load the corpus iterator and dicti >>> id2word = gensim.corpora.Dictionary.load_from_text('wiki_en_wordids.txt') >>> # load corpus iterator >>> mm = gensim.corpora.MmCorpus('wiki_en_tfidf.mm') + >>> # mm = gensim.corpora.MmCorpus('wiki_en_tfidf.mm.bz2') # use this if you compressed the TFIDF output >>> print(mm) MmCorpus(3931787 documents, 100000 features, 756379027 non-zero entries)