Skip to content

Code for NeurIPS 2024 work "MVSDet: Multi-View Indoor 3D Object Detection via Efficient Plane Sweeps"

License

Notifications You must be signed in to change notification settings

Pixie8888/MVSDet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MVSDet: Multi-View Indoor 3D Object Detection via Efficient Plane Sweeps

Created by Yating Xu from National University of Singapore.

Introduction

This repository contains the PyTorch implementation for NeurIPS 2024 work MVSDet: Multi-View Indoor 3D Object Detection via Efficient Plane Sweeps. Training and testing are conducted on two A5000 (48GB) GPUs.

Installation

  • Install mmdetection3d
  • Install packages related to Gaussian Splatting: we install pixelsplat.
  • Install torch-scatter: pip install torch-scatter==2.1.2 -f https://data.pyg.org/whl/torch-2.1.0%2Bcu118.html

Dataset

ScanNet

We follow this instruction to prepare ScanNet data.

ARKitScenes

We follow CN-RMA to prepare ARKitScenes data.

Train

CUDA_VISIBLE_DEVICES=0,1  bash tools/dist_train.sh projects/NeRF-Det/configs/mvsdet_res50_2x_low_res.py 2 --log_dir ModelName

Test

CUDA_VISIBLE_DEVICES=0,1  bash tools/dist_test.sh projects/NeRF-Det/configs/mvsdet_res50_2x_low_res.py path/to/checkpoint.pth 2

Acknowledgement

We thank mmdetection3d, PixelSplat and MVSNet for sharing their source code.

About

Code for NeurIPS 2024 work "MVSDet: Multi-View Indoor 3D Object Detection via Efficient Plane Sweeps"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages