forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDietMIP.java
executable file
·92 lines (75 loc) · 2.84 KB
/
DietMIP.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
/*
* Copyright 2017 Darian Sastre darian.sastre@minimaxlabs.com
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* ************************************************************************
*
* This model was created by Hakan Kjellerstrand (hakank@gmail.com)
*/
import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;
public class DietMIP {
static {
System.loadLibrary("jniortools");
}
private static MPSolver createSolver(String solverType) {
try {
return new MPSolver("MIPDiet", MPSolver.OptimizationProblemType.valueOf(solverType));
} catch (java.lang.IllegalArgumentException e) {
System.err.println("Bad solver type: " + e);
return null;
}
}
private static void solve(String solverType) {
MPSolver solver = createSolver(solverType);
double infinity = MPSolver.infinity();
int n = 4; // variables number
int m = 4; // constraints number
int[] price = { 50, 20, 30, 80 };
int[] limits = { 500, 6, 10, 8 };
int[] calories = { 400, 200, 150, 500 };
int[] chocolate = { 3, 2, 0, 0 };
int[] sugar = { 2, 2, 4, 4 };
int[] fat = { 2, 4, 1, 5 };
int[][] values = { calories, chocolate, sugar, fat };
MPVariable[] x = solver.makeIntVarArray(n, 0, 100, "x");
MPObjective objective = solver.objective();
MPConstraint[] targets = new MPConstraint[4];
for (int i = 0; i < n; i++) {
objective.setCoefficient(x[i], price[i]);
// constraints
targets[i] = solver.makeConstraint(limits[i], infinity);
for (int j = 0; j < m; j++) {
targets[i].setCoefficient(x[j], values[i][j]);
}
}
final MPSolver.ResultStatus resultStatus = solver.solve();
/** printing */
if (resultStatus != MPSolver.ResultStatus.OPTIMAL) {
System.err.println("The problem does not have an optimal solution!");
return;
} else {
System.out.println("Optimal objective value = " + solver.objective().value());
System.out.print("Item quantities: ");
System.out.print((int) x[0].solutionValue() + " ");
System.out.print((int) x[1].solutionValue() + " ");
System.out.print((int) x[2].solutionValue() + " ");
System.out.print((int) x[3].solutionValue() + " ");
}
}
public static void main(String[] args) throws Exception {
solve("CBC_MIXED_INTEGER_PROGRAMMING");
}
}