forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKnapsackMIP.java
executable file
·97 lines (84 loc) · 3.07 KB
/
KnapsackMIP.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
/*
* Copyright 2017 Darian Sastre darian.sastre@minimaxlabs.com
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* ************************************************************************
*
* Each knapsack perceives a different weight for each item. Item values are
* the same across knapsacks. Optimizing constrains the count of each item such
* that all knapsack capacities are respected, and their values are maximized.
*
* This model was created by Hakan Kjellerstrand (hakank@gmail.com)
*/
import com.google.ortools.linearsolver.*;
public class KnapsackMIP {
static {
System.loadLibrary("jniortools");
}
private static MPSolver createSolver(String solverType) {
try {
return new MPSolver("MIPDiet", MPSolver.OptimizationProblemType.valueOf(solverType));
} catch (java.lang.IllegalArgumentException e) {
System.err.println("Bad solver type: " + e);
return null;
}
}
private static void solve(String solverType) {
MPSolver solver = createSolver(solverType);
/** variables */
int itemCount = 12;
int capacityCount = 7;
int[] capacity = {18209, 7692, 1333, 924, 26638, 61188, 13360};
int[] value = {96, 76, 56, 11, 86, 10, 66, 86, 83, 12, 9, 81};
int[][] weights = {
{19, 1, 10, 1, 1, 14, 152, 11, 1, 1, 1, 1},
{0, 4, 53, 0, 0, 80, 0, 4, 5, 0, 0, 0},
{4, 660, 3, 0, 30, 0, 3, 0, 4, 90, 0, 0},
{7, 0, 18, 6, 770, 330, 7, 0, 0, 6, 0, 0},
{0, 20, 0, 4, 52, 3, 0, 0, 0, 5, 4, 0},
{0, 0, 40, 70, 4, 63, 0, 0, 60, 0, 4, 0},
{0, 32, 0, 0, 0, 5, 0, 3, 0, 660, 0, 9}
};
int maxCapacity = -1;
for (int c : capacity) {
if (c > maxCapacity) {
maxCapacity = c;
}
}
MPVariable[] taken = solver.makeIntVarArray(itemCount, 0, maxCapacity);
/** constraints */
MPConstraint constraints[] = new MPConstraint[capacityCount];
for (int i = 0; i < capacityCount; i++) {
constraints[i] = solver.makeConstraint(0, capacity[i]);
for (int j = 0; j < itemCount; j++) {
constraints[i].setCoefficient(taken[j], weights[i][j]);
}
}
/** objective */
MPObjective obj = solver.objective();
obj.setMaximization();
for (int i = 0; i < itemCount; i++) {
obj.setCoefficient(taken[i], value[i]);
}
solver.solve();
/** printing */
System.out.println("Max cost: " + obj.value());
System.out.print("Item quantities: ");
for (MPVariable var : taken) {
System.out.print((int) var.solutionValue() + " ");
}
}
public static void main(String[] args) {
solve("CBC_MIXED_INTEGER_PROGRAMMING");
}
}