forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbacp.py
90 lines (65 loc) · 2.75 KB
/
bacp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# Copyright 2010 Pierre Schaus pschaus@gmail.com
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from ortools.constraint_solver import pywrapcp
parser = argparse.ArgumentParser()
parser.add_argument(
'--data', default='examples/data/bacp/bacp12.txt', help='path to data file')
#----------------helper for binpacking posting----------------
def BinPacking(solver, binvars, weights, loadvars):
"""post the load constraint on bins.
constraints forall j: loadvars[j] == sum_i (binvars[i] == j) * weights[i])
"""
pack = solver.Pack(binvars, len(loadvars))
pack.AddWeightedSumEqualVarDimension(weights, loadvars)
solver.Add(pack)
solver.Add(solver.SumEquality(loadvars, sum(weights)))
#------------------------------data reading-------------------
def ReadData(filename):
"""Read data from <filename>."""
f = open(filename)
nb_courses, nb_periods, min_credit, max_credit, nb_prereqs =\
[int(nb) for nb in f.readline().split()]
credits = [int(nb) for nb in f.readline().split()]
prereq = [int(nb) for nb in f.readline().split()]
prereq = [(prereq[i * 2], prereq[i * 2 + 1]) for i in range(nb_prereqs)]
return (credits, nb_periods, prereq)
def main(args):
#------------------solver and variable declaration-------------
credits, nb_periods, prereq = ReadData(args.data)
nb_courses = len(credits)
solver = pywrapcp.Solver('Balanced Academic Curriculum Problem')
x = [
solver.IntVar(0, nb_periods - 1, 'x' + str(i)) for i in range(nb_courses)
]
load_vars = [
solver.IntVar(0, sum(credits), 'load_vars' + str(i))
for i in range(nb_periods)
]
#-------------------post of the constraints--------------
# Bin Packing.
BinPacking(solver, x, credits, load_vars)
# Add dependencies.
for i, j in prereq:
solver.Add(x[i] < x[j])
#----------------Objective-------------------------------
objective_var = solver.Max(load_vars)
objective = solver.Minimize(objective_var, 1)
#------------start the search and optimization-----------
db = solver.Phase(x, solver.CHOOSE_MIN_SIZE_LOWEST_MIN,
solver.INT_VALUE_DEFAULT)
search_log = solver.SearchLog(100000, objective_var)
solver.Solve(db, [objective, search_log])
if __name__ == '__main__':
main(parser.parse_args())