forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathappointments.py
165 lines (135 loc) · 6.03 KB
/
appointments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# Copyright 2010-2018 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Generates possible daily schedules for workers."""
from __future__ import print_function
from __future__ import division
import argparse
from ortools.sat.python import cp_model
from ortools.linear_solver import pywraplp
PARSER = argparse.ArgumentParser()
PARSER.add_argument(
'--load_min', default=480, type=int, help='Minimum load in minutes')
PARSER.add_argument(
'--load_max', default=540, type=int, help='Maximum load in minutes')
PARSER.add_argument(
'--commute_time', default=30, type=int, help='Commute time in minutes')
PARSER.add_argument(
'--num_workers', default=98, type=int, help='Maximum number of workers.')
class AllSolutionCollector(cp_model.CpSolverSolutionCallback):
"""Stores all solutions."""
def __init__(self, variables):
cp_model.CpSolverSolutionCallback.__init__(self)
self.__variables = variables
self.__collect = []
def on_solution_callback(self):
"""Collect a new combination."""
combination = [self.Value(v) for v in self.__variables]
self.__collect.append(combination)
def combinations(self):
"""Returns all collected combinations."""
return self.__collect
def find_combinations(durations, load_min, load_max, commute_time):
"""This methods find all valid combinations of appointments.
This methods find all combinations of appointments such that the sum of
durations + commute times is between load_min and load_max.
Args:
durations: The durations of all appointments.
load_min: The min number of worked minutes for a valid selection.
load_max: The max number of worked minutes for a valid selection.
commute_time: The commute time between two appointments in minutes.
Returns:
A matrix where each line is a valid combinations of appointments.
"""
model = cp_model.CpModel()
variables = [
model.NewIntVar(0, load_max // (duration + commute_time), '')
for duration in durations
]
terms = sum(variables[i] * (duration + commute_time)
for i, duration in enumerate(durations))
model.AddLinearConstraint(terms, load_min, load_max)
solver = cp_model.CpSolver()
solution_collector = AllSolutionCollector(variables)
solver.SearchForAllSolutions(model, solution_collector)
return solution_collector.combinations()
def select(combinations, loads, max_number_of_workers):
"""This method selects the optimal combination of appointments.
This method uses Mixed Integer Programming to select the optimal mix of
appointments.
"""
solver = pywraplp.Solver('Select',
pywraplp.Solver.CBC_MIXED_INTEGER_PROGRAMMING)
num_vars = len(loads)
num_combinations = len(combinations)
variables = [
solver.IntVar(0, max_number_of_workers, 's[%d]' % i)
for i in range(num_combinations)
]
achieved = [
solver.IntVar(0, 1000, 'achieved[%d]' % i) for i in range(num_vars)
]
transposed = [[
combinations[type][index] for type in range(num_combinations)
] for index in range(num_vars)]
# Maintain the achieved variables.
for i, coefs in enumerate(transposed):
ct = solver.Constraint(0.0, 0.0)
ct.SetCoefficient(achieved[i], -1)
for j, coef in enumerate(coefs):
ct.SetCoefficient(variables[j], coef)
# Simple bound.
solver.Add(solver.Sum(variables) <= max_number_of_workers)
obj_vars = [
solver.IntVar(0, 1000, 'obj_vars[%d]' % i) for i in range(num_vars)
]
for i in range(num_vars):
solver.Add(obj_vars[i] >= achieved[i] - loads[i])
solver.Add(obj_vars[i] >= loads[i] - achieved[i])
solver.Minimize(solver.Sum(obj_vars))
result_status = solver.Solve()
# The problem has an optimal solution.
if result_status == pywraplp.Solver.OPTIMAL:
print('Problem solved in %f milliseconds' % solver.WallTime())
return solver.Objective().Value(), [
int(v.SolutionValue()) for v in variables
]
return -1, []
def get_optimal_schedule(demand, args):
"""Computes the optimal schedule for the appointment selection problem."""
combinations = find_combinations([a[2] for a in demand], args.load_min,
args.load_max, args.commute_time)
print('found %d possible combinations of appointements' % len(combinations))
cost, selection = select(combinations, [a[0]
for a in demand], args.num_workers)
output = [(selection[i], [(combinations[i][t], demand[t][1])
for t in range(len(demand))
if combinations[i][t] != 0])
for i in range(len(selection)) if selection[i] != 0]
return cost, output
def main(args):
"""Solve the assignment problem."""
demand = [(40, 'A1', 90), (30, 'A2', 120), (25, 'A3', 180)]
print('appointments: ')
for a in demand:
print(' %d * %s : %d min' % (a[0], a[1], a[2]))
print('commute time = %d' % args.commute_time)
print('accepted total duration = [%d..%d]' % (args.load_min, args.load_max))
print('%d workers' % args.num_workers)
cost, selection = get_optimal_schedule(demand, args)
print('Optimal solution as a cost of %d' % cost)
for template in selection:
print('%d schedules with ' % template[0])
for t in template[1]:
print(' %d installation of type %s' % (t[0], t[1]))
if __name__ == '__main__':
main(PARSER.parse_args())