forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinear_programming.py
85 lines (72 loc) · 3.08 KB
/
linear_programming.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#!/usr/bin/env python
# This Python file uses the following encoding: utf-8
# Copyright 2018 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Linear optimization example"""
from __future__ import print_function
from ortools.linear_solver import pywraplp
def main():
"""Entry point of the program"""
# Instantiate a Glop solver, naming it LinearExample.
solver = pywraplp.Solver('LinearExample',
pywraplp.Solver.GLOP_LINEAR_PROGRAMMING)
# Create the two variables and let them take on any value.
x = solver.NumVar(-solver.infinity(), solver.infinity(), 'x')
y = solver.NumVar(-solver.infinity(), solver.infinity(), 'y')
# Objective function: Maximize 3x + 4y.
objective = solver.Objective()
objective.SetCoefficient(x, 3)
objective.SetCoefficient(y, 4)
objective.SetMaximization()
# Constraint 0: x + 2y <= 14.
constraint0 = solver.Constraint(-solver.infinity(), 14)
constraint0.SetCoefficient(x, 1)
constraint0.SetCoefficient(y, 2)
# Constraint 1: 3x - y >= 0.
constraint1 = solver.Constraint(0, solver.infinity())
constraint1.SetCoefficient(x, 3)
constraint1.SetCoefficient(y, -1)
# Constraint 2: x - y <= 2.
constraint2 = solver.Constraint(-solver.infinity(), 2)
constraint2.SetCoefficient(x, 1)
constraint2.SetCoefficient(y, -1)
print('Number of variables =', solver.NumVariables())
print('Number of constraints =', solver.NumConstraints())
# Solve the system.
status = solver.Solve()
# Check that the problem has an optimal solution.
if status != pywraplp.Solver.OPTIMAL:
print("The problem does not have an optimal solution!")
exit(1)
print('Solution:')
print('x =', x.solution_value())
print('y =', y.solution_value())
print('Optimal objective value =', objective.Value())
print('')
print('Advanced usage:')
print('Problem solved in ', solver.wall_time(), ' milliseconds')
print('Problem solved in ', solver.iterations(), ' iterations')
print('x: reduced cost =', x.reduced_cost())
print('y: reduced cost =', y.reduced_cost())
activities = solver.ComputeConstraintActivities()
print('constraint0: dual value =',
constraint0.dual_value(), ' activities =',
activities[constraint0.index()])
print('constraint1: dual value =',
constraint1.dual_value(), ' activities =',
activities[constraint1.index()])
print('constraint2: dual value =',
constraint2.dual_value(), ' activities =',
activities[constraint2.index()])
if __name__ == '__main__':
main()