forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrcpsp_sat.py
288 lines (244 loc) · 11.4 KB
/
rcpsp_sat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
# Copyright 2010-2018 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Sat based solver for the RCPSP problems (see rcpsp.proto)."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import collections
import time
from google.protobuf import text_format
from ortools.data import pywraprcpsp
from ortools.sat.python import cp_model
PARSER = argparse.ArgumentParser()
PARSER.add_argument(
'--input', default="", help='Input file to parse and solve.')
PARSER.add_argument(
'--output_proto',
default="",
help='Output file to write the cp_model'
'proto to.')
PARSER.add_argument('--params', default="", help='Sat solver parameters.')
class SolutionPrinter(cp_model.CpSolverSolutionCallback):
"""Print intermediate solutions."""
def __init__(self):
cp_model.CpSolverSolutionCallback.__init__(self)
self.__solution_count = 0
self.__start_time = time.time()
def on_solution_callback(self):
current_time = time.time()
objective = self.ObjectiveValue()
print('Solution %i, time = %f s, objective = %i' %
(self.__solution_count, current_time - self.__start_time,
objective))
self.__solution_count += 1
def solve_rcpsp(problem, proto_file, params):
"""Parse and solve a given RCPSP problem in proto format."""
# Determine problem type.
problem_type = ('Resource Investment Problem'
if problem.is_resource_investment else 'RCPSP')
if problem.is_rcpsp_max:
problem_type += '/Max delay'
# We print 2 less tasks as these are sentinel tasks that are not counted in
# the description of the rcpsp models.
if problem.is_consumer_producer:
print('Solving %s with %i reservoir resources and %i tasks' %
(problem_type, len(problem.resources), len(problem.tasks) - 2))
else:
print('Solving %s with %i resources and %i tasks' %
(problem_type, len(problem.resources), len(problem.tasks) - 2))
# Create the model.
model = cp_model.CpModel()
num_tasks = len(problem.tasks)
num_resources = len(problem.resources)
all_active_tasks = range(1, num_tasks - 1)
all_resources = range(num_resources)
horizon = problem.deadline if problem.deadline != -1 else problem.horizon
if horizon == -1: # Naive computation.
horizon = sum(max(r.duration for r in t.recipes) for t in problem.tasks)
if problem.is_rcpsp_max:
for t in problem.tasks:
for sd in t.successor_delays:
for rd in sd.recipe_delays:
for d in rd.min_delays:
horizon += abs(d)
print(' - horizon = %i' % horizon)
# Containers used to build resources.
intervals_per_resource = collections.defaultdict(list)
demands_per_resource = collections.defaultdict(list)
presences_per_resource = collections.defaultdict(list)
starts_per_resource = collections.defaultdict(list)
# Starts and ends for master interval variables.
task_starts = {}
task_ends = {}
# Containers for per-recipe per task variables.
alternatives_per_task = collections.defaultdict(list)
presences_per_task = collections.defaultdict(list)
starts_per_task = collections.defaultdict(list)
ends_per_task = collections.defaultdict(list)
one = model.NewIntVar(1, 1, 'one')
# Create tasks.
for t in all_active_tasks:
task = problem.tasks[t]
if len(task.recipes) == 1:
# Create interval.
recipe = task.recipes[0]
task_starts[t] = model.NewIntVar(0, horizon, 'start_of_task_%i' % t)
task_ends[t] = model.NewIntVar(0, horizon, 'end_of_task_%i' % t)
interval = model.NewIntervalVar(task_starts[t], recipe.duration,
task_ends[t], 'interval_%i' % t)
# Store for later.
alternatives_per_task[t].append(interval)
starts_per_task[t].append(task_starts[t])
ends_per_task[t].append(task_ends[t])
presences_per_task[t].append(one)
# Register for resources.
for i in range(len(recipe.demands)):
demand = recipe.demands[i]
res = recipe.resources[i]
demands_per_resource[res].append(demand)
if problem.resources[res].renewable:
intervals_per_resource[res].append(interval)
else:
starts_per_resource[res].append(task_starts[t])
presences_per_resource[res].append(1)
else:
all_recipes = range(len(task.recipes))
# Compute duration range.
min_size = min(recipe.duration for recipe in task.recipes)
max_size = max(recipe.duration for recipe in task.recipes)
# Create one optional interval per recipe.
for r in all_recipes:
recipe = task.recipes[r]
is_present = model.NewBoolVar('is_present_%i_r%i' % (t, r))
start = model.NewIntVar(0, horizon, 'start_%i_r%i' % (t, r))
end = model.NewIntVar(0, horizon, 'end_%i_r%i' % (t, r))
interval = model.NewOptionalIntervalVar(
start, recipe.duration, end, is_present,
'interval_%i_r%i' % (t, r))
# Store variables.
alternatives_per_task[t].append(interval)
starts_per_task[t].append(start)
ends_per_task[t].append(end)
presences_per_task[t].append(is_present)
# Register intervals in resources.
for i in range(len(recipe.demands)):
demand = recipe.demands[i]
res = recipe.resources[i]
demands_per_resource[res].append(demand)
if problem.resources[res].renewable:
intervals_per_resource[res].append(interval)
else:
starts_per_resource[res].append(start)
presences_per_resource[res].append(is_present)
# Create the master interval for the task.
task_starts[t] = model.NewIntVar(0, horizon, 'start_of_task_%i' % t)
task_ends[t] = model.NewIntVar(0, horizon, 'end_of_task_%i' % t)
duration = model.NewIntVar(min_size, max_size,
'duration_of_task_%i' % t)
interval = model.NewIntervalVar(task_starts[t], duration,
task_ends[t], 'interval_%i' % t)
# Link with optional per-recipe copies.
for r in all_recipes:
p = presences_per_task[t][r]
model.Add(
task_starts[t] == starts_per_task[t][r]).OnlyEnforceIf(p)
model.Add(task_ends[t] == ends_per_task[t][r]).OnlyEnforceIf(p)
model.Add(duration == task.recipes[r].duration).OnlyEnforceIf(p)
model.Add(sum(presences_per_task[t]) == 1)
# Create makespan variable
makespan = model.NewIntVar(0, horizon, 'makespan')
# Add precedences.
if problem.is_rcpsp_max:
for task_id in all_active_tasks:
task = problem.tasks[task_id]
num_modes = len(task.recipes)
for successor_index in range(len(task.successors)):
next_id = task.successors[successor_index]
delay_matrix = task.successor_delays[successor_index]
num_next_modes = len(problem.tasks[next_id].recipes)
for m1 in range(num_modes):
s1 = starts_per_task[task_id][m1]
p1 = presences_per_task[task_id][m1]
if next_id == num_tasks - 1:
delay = delay_matrix.recipe_delays[m1].min_delays[0]
model.Add(s1 + delay <= makespan).OnlyEnforceIf(p1)
else:
for m2 in range(num_next_modes):
delay = delay_matrix.recipe_delays[m1].min_delays[
m2]
s2 = starts_per_task[next_id][m2]
p2 = presences_per_task[next_id][m2]
model.Add(s1 + delay <= s2).OnlyEnforceIf([p1, p2])
else: # Normal dependencies (task ends before the start of successors).
for t in all_active_tasks:
for n in problem.tasks[t].successors:
if n == num_tasks - 1:
model.Add(task_ends[t] <= makespan)
else:
model.Add(task_ends[t] <= task_starts[n])
# Containers for resource investment problems.
capacities = []
max_cost = 0
# Create resources.
for r in all_resources:
resource = problem.resources[r]
c = resource.max_capacity
if c == -1:
c = sum(demands_per_resource[r])
if problem.is_resource_investment:
# RIP problems have only renewable resources.
capacity = model.NewIntVar(0, c, 'capacity_of_%i' % r)
model.AddCumulative(intervals_per_resource[r],
demands_per_resource[r], capacity)
capacities.append(capacity)
max_cost += c * resource.unit_cost
elif resource.renewable:
if intervals_per_resource[r]:
model.AddCumulative(intervals_per_resource[r],
demands_per_resource[r], c)
elif presences_per_resource[r]: # Non empty non renewable resource.
if problem.is_consumer_producer:
model.AddReservoirConstraint(
starts_per_resource[r], demands_per_resource[r],
resource.min_capacity, resource.max_capacity)
else:
model.Add(
sum(presences_per_resource[r][i] *
demands_per_resource[r][i]
for i in range(len(presences_per_resource[r]))) <= c)
# Objective.
if problem.is_resource_investment:
objective = model.NewIntVar(0, max_cost, 'capacity_costs')
model.Add(objective == sum(problem.resources[i].unit_cost * capacities[
i] for i in range(len(capacities))))
else:
objective = makespan
model.Minimize(objective)
if proto_file:
print('Writing proto to %s' % proto_file)
with open(proto_file, 'w') as text_file:
text_file.write(str(model))
# Solve model.
solver = cp_model.CpSolver()
if params:
text_format.Merge(params, solver.parameters)
solution_printer = SolutionPrinter()
solver.SolveWithSolutionCallback(model, solution_printer)
print(solver.ResponseStats())
def main(args):
rcpsp_parser = pywraprcpsp.RcpspParser()
rcpsp_parser.ParseFile(args.input)
solve_rcpsp(rcpsp_parser.Problem(), args.output_proto, args.params)
if __name__ == '__main__':
main(PARSER.parse_args())