forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrouting_flow.cc
420 lines (402 loc) · 16.3 KB
/
routing_flow.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_lp_scheduling.h"
#include "ortools/graph/min_cost_flow.h"
namespace operations_research {
namespace {
// Compute set of disjunctions involved in a pickup and delivery pair.
template <typename Disjunctions>
void AddDisjunctionsFromNodes(const RoutingModel& model,
const std::vector<int64>& nodes,
Disjunctions* disjunctions) {
for (int64 node : nodes) {
for (const auto disjunction : model.GetDisjunctionIndices(node)) {
disjunctions->insert(disjunction);
}
}
}
} // namespace
bool RoutingModel::IsMatchingModel() const {
// TODO(user): Support overlapping disjunctions and disjunctions with
// a cardinality > 1.
absl::flat_hash_set<int> disjunction_nodes;
for (DisjunctionIndex i(0); i < GetNumberOfDisjunctions(); ++i) {
if (GetDisjunctionMaxCardinality(i) > 1) return false;
for (int64 node : GetDisjunctionIndices(i)) {
if (!disjunction_nodes.insert(node).second) return false;
}
}
for (const auto& pd_pairs : GetPickupAndDeliveryPairs()) {
absl::flat_hash_set<DisjunctionIndex> disjunctions;
AddDisjunctionsFromNodes(*this, pd_pairs.first, &disjunctions);
AddDisjunctionsFromNodes(*this, pd_pairs.second, &disjunctions);
// Pairs involving more than 2 disjunctions are not supported.
if (disjunctions.size() > 2) return false;
}
// Detect if a "unary" dimension prevents from having more than a single
// non-start/end node (or a single pickup and delivery pair) on a route.
// Binary dimensions are not considered because they would result in a
// quadratic check.
for (const RoutingDimension* const dimension : dimensions_) {
// TODO(user): Support vehicle-dependent dimension callbacks.
if (dimension->class_evaluators_.size() != 1) {
continue;
}
const TransitCallback1& transit =
UnaryTransitCallbackOrNull(dimension->class_evaluators_[0]);
if (transit == nullptr) {
continue;
}
int64 max_vehicle_capacity = 0;
for (int64 vehicle_capacity : dimension->vehicle_capacities()) {
max_vehicle_capacity = std::max(max_vehicle_capacity, vehicle_capacity);
}
std::vector<int64> transits(nexts_.size(), kint64max);
for (int i = 0; i < nexts_.size(); ++i) {
if (!IsStart(i) && !IsEnd(i)) {
transits[i] = std::min(transits[i], transit(i));
}
}
int64 min_transit = kint64max;
// Find the minimal accumulated value resulting from a pickup and delivery
// pair.
for (const auto& pd_pairs : GetPickupAndDeliveryPairs()) {
const auto transit_cmp = [&transits](int i, int j) {
return transits[i] < transits[j];
};
min_transit = std::min(
min_transit,
// Min transit from pickup.
transits[*std::min_element(pd_pairs.first.begin(),
pd_pairs.first.end(), transit_cmp)] +
// Min transit from delivery.
transits[*std::min_element(pd_pairs.second.begin(),
pd_pairs.second.end(), transit_cmp)]);
}
// Find the minimal accumulated value resulting from a non-pickup/delivery
// node.
for (int i = 0; i < transits.size(); ++i) {
if (GetPickupIndexPairs(i).empty() && GetDeliveryIndexPairs(i).empty()) {
min_transit = std::min(min_transit, transits[i]);
}
}
// If there cannot be more than one node or pickup and delivery, a matching
// problem has been detected.
if (CapProd(min_transit, 2) > max_vehicle_capacity) return true;
}
return false;
}
// Solve matching model using a min-cost flow. Here is the underlyihg flow:
//
// ---------- Source -------------
// | (1,0) | (N,0)
// V V
// (vehicles) unperformed
// | (1,cost) |
// V |
// (nodes/pickup/deliveries) | (1,penalty)
// | (1,0) |
// V |
// disjunction <---------
// | (1, 0)
// V
// Sink
//
// On arcs, (,) represents (capacity, cost).
// N: number of disjunctions
//
namespace {
struct FlowArc {
int64 tail;
int64 head;
int64 capacity;
int64 cost;
};
} // namespace
bool RoutingModel::SolveMatchingModel(Assignment* assignment) {
VLOG(2) << "Solving with flow";
assignment->Clear();
// Collect dimensions with costs.
// TODO(user): If the costs are soft cumul upper (resp. lower) bounds only,
// do not use the LP model.
const std::vector<RoutingDimension*> dimensions =
GetDimensionsWithSoftOrSpanCosts();
std::vector<LocalDimensionCumulOptimizer> optimizers;
optimizers.reserve(dimensions.size());
for (RoutingDimension* dimension : dimensions) {
optimizers.emplace_back(dimension);
}
int num_flow_nodes = 0;
std::vector<std::vector<int64>> disjunction_to_flow_nodes;
std::vector<int64> disjunction_penalties;
std::vector<bool> in_disjunction(Size(), false);
// Create pickup and delivery pair flow nodes.
// TODO(user): Check pair alternatives correspond exactly to at most two
// disjunctions.
absl::flat_hash_map<int, std::pair<int64, int64>> flow_to_pd;
for (const auto& pd_pairs : GetPickupAndDeliveryPairs()) {
disjunction_to_flow_nodes.push_back({});
absl::flat_hash_set<DisjunctionIndex> disjunctions;
AddDisjunctionsFromNodes(*this, pd_pairs.first, &disjunctions);
AddDisjunctionsFromNodes(*this, pd_pairs.second, &disjunctions);
for (int64 pickup : pd_pairs.first) {
in_disjunction[pickup] = true;
for (int64 delivery : pd_pairs.second) {
in_disjunction[delivery] = true;
flow_to_pd[num_flow_nodes] = {pickup, delivery};
disjunction_to_flow_nodes.back().push_back(num_flow_nodes);
num_flow_nodes++;
}
}
DCHECK_LE(disjunctions.size(), 2);
int64 penalty = 0;
if (disjunctions.size() < 2) {
penalty = kNoPenalty;
} else {
for (DisjunctionIndex index : disjunctions) {
const int64 d_penalty = GetDisjunctionPenalty(index);
if (d_penalty == kNoPenalty) {
penalty = kNoPenalty;
break;
}
penalty = CapAdd(penalty, d_penalty);
}
}
disjunction_penalties.push_back(penalty);
}
// Create non-pickup and delivery flow nodes.
absl::flat_hash_map<int, int64> flow_to_non_pd;
for (int node = 0; node < Size(); ++node) {
if (IsStart(node) || in_disjunction[node]) continue;
const std::vector<DisjunctionIndex>& disjunctions =
GetDisjunctionIndices(node);
DCHECK_LE(disjunctions.size(), 1);
disjunction_to_flow_nodes.push_back({});
disjunction_penalties.push_back(
disjunctions.empty() ? kNoPenalty
: GetDisjunctionPenalty(disjunctions.back()));
if (disjunctions.empty()) {
in_disjunction[node] = true;
flow_to_non_pd[num_flow_nodes] = node;
disjunction_to_flow_nodes.back().push_back(num_flow_nodes);
num_flow_nodes++;
} else {
for (int n : GetDisjunctionIndices(disjunctions.back())) {
in_disjunction[n] = true;
flow_to_non_pd[num_flow_nodes] = n;
disjunction_to_flow_nodes.back().push_back(num_flow_nodes);
num_flow_nodes++;
}
}
}
std::vector<FlowArc> arcs;
// Build a flow node for each disjunction and corresponding arcs.
// Each node exits to the sink through a node, for which the outgoing
// capacity is one (only one of the nodes in the disjunction is performed).
absl::flat_hash_map<int, int> flow_to_disjunction;
for (int i = 0; i < disjunction_to_flow_nodes.size(); ++i) {
const std::vector<int64>& flow_nodes = disjunction_to_flow_nodes[i];
if (flow_nodes.size() == 1) {
flow_to_disjunction[flow_nodes.back()] = i;
} else {
flow_to_disjunction[num_flow_nodes] = i;
for (int64 flow_node : flow_nodes) {
arcs.push_back({flow_node, num_flow_nodes, 1, 0});
}
num_flow_nodes++;
}
}
// Build arcs from each vehicle to each non-vehicle flow node; the cost of
// each arc corresponds to:
// start(vehicle) -> pickup -> delivery -> end(vehicle)
// or
// start(vehicle) -> node -> end(vehicle)
std::vector<int> vehicle_to_flow;
absl::flat_hash_map<int, int> flow_to_vehicle;
for (int vehicle = 0; vehicle < vehicles(); ++vehicle) {
const int64 start = Start(vehicle);
const int64 end = End(vehicle);
for (const std::vector<int64>& flow_nodes : disjunction_to_flow_nodes) {
for (int64 flow_node : flow_nodes) {
std::pair<int64, int64> pd_pair;
int64 node = -1;
int64 cost = 0;
bool add_arc = false;
if (gtl::FindCopy(flow_to_pd, flow_node, &pd_pair)) {
const int64 pickup = pd_pair.first;
const int64 delivery = pd_pair.second;
if (IsVehicleAllowedForIndex(vehicle, pickup) &&
IsVehicleAllowedForIndex(vehicle, delivery)) {
add_arc = true;
cost =
CapAdd(GetArcCostForVehicle(start, pickup, vehicle),
CapAdd(GetArcCostForVehicle(pickup, delivery, vehicle),
GetArcCostForVehicle(delivery, end, vehicle)));
const std::unordered_map<int64, int64> nexts = {
{start, pickup}, {pickup, delivery}, {delivery, end}};
for (LocalDimensionCumulOptimizer& optimizer : optimizers) {
int64 cumul_cost_value = 0;
if (optimizer.ComputeRouteCumulCostWithoutFixedTransits(
vehicle,
[&nexts](int64 node) { return nexts.find(node)->second; },
&cumul_cost_value)) {
cost = CapAdd(cost, cumul_cost_value);
} else {
add_arc = false;
break;
}
}
}
} else if (gtl::FindCopy(flow_to_non_pd, flow_node, &node)) {
if (IsVehicleAllowedForIndex(vehicle, node)) {
add_arc = true;
cost = CapAdd(GetArcCostForVehicle(start, node, vehicle),
GetArcCostForVehicle(node, end, vehicle));
const std::unordered_map<int64, int64> nexts = {{start, node},
{node, end}};
for (LocalDimensionCumulOptimizer& optimizer : optimizers) {
int64 cumul_cost_value = 0;
if (optimizer.ComputeRouteCumulCostWithoutFixedTransits(
vehicle,
[&nexts](int64 node) { return nexts.find(node)->second; },
&cumul_cost_value)) {
cost = CapAdd(cost, cumul_cost_value);
} else {
add_arc = false;
break;
}
}
}
} else {
DCHECK(false);
}
if (add_arc) {
arcs.push_back({num_flow_nodes, flow_node, 1, cost});
}
}
}
flow_to_vehicle[num_flow_nodes] = vehicle;
vehicle_to_flow.push_back(num_flow_nodes);
num_flow_nodes++;
}
// Create flow source and sink nodes.
const int source = num_flow_nodes + 1;
const int sink = source + 1;
// Source connected to vehicle nodes.
for (int vehicle = 0; vehicle < vehicles(); ++vehicle) {
arcs.push_back({source, vehicle_to_flow[vehicle], 1, 0});
}
// Handle unperformed nodes.
// Create a node to catch unperformed nodes and connect it to source.
const int unperformed = num_flow_nodes;
const int64 flow_supply = disjunction_to_flow_nodes.size();
arcs.push_back({source, unperformed, flow_supply, 0});
for (const auto& flow_disjunction_element : flow_to_disjunction) {
const int flow_node = flow_disjunction_element.first;
const int64 penalty =
disjunction_penalties[flow_disjunction_element.second];
if (penalty != kNoPenalty) {
arcs.push_back({unperformed, flow_node, 1, penalty});
}
// Connect non-vehicle flow nodes to sinks.
arcs.push_back({flow_node, sink, 1, 0});
}
// Rescale costs for min-cost flow; assuming max cost resulting from the
// push-relabel flow algorithm is max_arc_cost * (num_nodes+1) * (num_nodes+1)
// (cost-scaling multiplies arc costs by num_nodes+1 and the flow itself can
// accumulate num_nodes+1 such arcs (with capacity being 1 for costed arcs)).
int64 scale_factor = 1;
const FlowArc& arc_with_max_cost = *std::max_element(
arcs.begin(), arcs.end(),
[](const FlowArc& a, const FlowArc& b) { return a.cost < b.cost; });
// SimpleMinCostFlow adds a source and a sink node, so actual number of
// nodes to consider is num_flow_nodes + 3.
const int actual_flow_num_nodes = num_flow_nodes + 3;
if (log(static_cast<double>(arc_with_max_cost.cost) + 1) +
2 * log(actual_flow_num_nodes) >
log(std::numeric_limits<int64>::max())) {
scale_factor = CapProd(actual_flow_num_nodes, actual_flow_num_nodes);
}
SimpleMinCostFlow flow;
// Add arcs to flow.
for (const FlowArc& arc : arcs) {
flow.AddArcWithCapacityAndUnitCost(arc.tail, arc.head, arc.capacity,
arc.cost / scale_factor);
}
// Set flow supply (number of non-vehicle nodes or pairs).
flow.SetNodeSupply(source, flow_supply);
flow.SetNodeSupply(sink, -flow_supply);
// TODO(user): Take time limit into account.
if (flow.Solve() != SimpleMinCostFlow::OPTIMAL) {
return false;
}
// Map the flow result to assignment, only setting next variables.
std::vector<bool> used_vehicles(vehicles(), false);
absl::flat_hash_set<int> used_nodes;
for (int i = 0; i < flow.NumArcs(); ++i) {
if (flow.Flow(i) > 0 && flow.Tail(i) != source && flow.Head(i) != sink) {
std::vector<int> nodes;
std::pair<int64, int64> pd_pair;
int node = -1;
int index = -1;
if (gtl::FindCopy(flow_to_pd, flow.Head(i), &pd_pair)) {
nodes.push_back(pd_pair.first);
nodes.push_back(pd_pair.second);
} else if (gtl::FindCopy(flow_to_non_pd, flow.Head(i), &node)) {
nodes.push_back(node);
} else if (gtl::FindCopy(flow_to_disjunction, flow.Head(i), &index)) {
for (int64 flow_node : disjunction_to_flow_nodes[index]) {
if (gtl::FindCopy(flow_to_pd, flow_node, &pd_pair)) {
nodes.push_back(pd_pair.first);
nodes.push_back(pd_pair.second);
} else if (gtl::FindCopy(flow_to_non_pd, flow_node, &node)) {
nodes.push_back(node);
}
}
}
int vehicle = -1;
if (flow.Tail(i) == unperformed) {
// Head is unperformed.
for (int node : nodes) {
assignment->Add(NextVar(node))->SetValue(node);
used_nodes.insert(node);
}
} else if (gtl::FindCopy(flow_to_vehicle, flow.Tail(i), &vehicle)) {
// Head is performed on a vehicle.
used_vehicles[vehicle] = true;
int current = Start(vehicle);
for (int node : nodes) {
assignment->Add(NextVar(current))->SetValue(node);
used_nodes.insert(node);
current = node;
}
assignment->Add(NextVar(current))->SetValue(End(vehicle));
}
}
}
// Adding unused nodes.
for (int node = 0; node < Size(); ++node) {
if (!IsStart(node) && used_nodes.count(node) == 0) {
assignment->Add(NextVar(node))->SetValue(node);
}
}
// Adding unused vehicles.
for (int vehicle = 0; vehicle < vehicles(); ++vehicle) {
if (!used_vehicles[vehicle]) {
assignment->Add(NextVar(Start(vehicle)))->SetValue(End(vehicle));
}
}
return true;
}
} // namespace operations_research