-
Notifications
You must be signed in to change notification settings - Fork 0
/
Hotmail_5_ComputeScores.py
186 lines (138 loc) · 5.73 KB
/
Hotmail_5_ComputeScores.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#!coding: utf-8
import Break_Captcha_util
import pickle
import os
import Image
import math
import psyco
psyco.full()
#TRACEBACK
import traceback
import sys
def Myexcepthook(type, value, tb):
lines=traceback.format_exception(type, value, tb)
f=open('log.txt', 'a')
f.write("\n".join(lines))
f.close()
sys.excepthook=Myexcepthook
def compute_scores_list(model, captcha, parent=None):
#Liste des scores
liste_scores = []
#Compute scores for all widths and starting positions
for size in range(8, 30, 1):
print size, "/", 30
for starting_pos in range(0, captcha.size[0] - size):
preprocessed_captcha_part = captcha.crop((starting_pos, 0, starting_pos+size, 31))
#Si parent=None, on enlève le blanc sur les cotés
miny=100000
maxy=0
for i in xrange(size):
for j in xrange(31):
if preprocessed_captcha_part.getpixel((i,j)) == 0:
if j<miny:
miny=j
if j>maxy:
maxy=j
preprocessed_captcha_part = preprocessed_captcha_part.crop((0, miny, size, maxy+1))
sizei = maxy-miny+1
im = Image.new('L', (31, 31), 1)
im.paste(preprocessed_captcha_part, ((31-size)/2, (31-sizei)/2))
prediction, max_score = Break_Captcha_util.predict(model, im, None, 0)
#liste_scores.append((starting_pos+size, size, 1/(1-max_score), prediction))
liste_scores.append((starting_pos+size, size, math.log(max_score), prediction))
if not parent:
f=open('scores.pck', 'w')
pickle.dump(liste_scores, f)
f.close()
return liste_scores
def use_dynamic_programming(liste_scores):
liste_scores.sort()
#Max scores at ending point
posmax = 0
sizes = set([])
d = {}
for (pos, size, score, prediction) in liste_scores:
d[pos] = {0 : [[], [], -10000],
1 : [[], [], -10000],
2 : [[], [], -10000],
3 : [[], [], -10000],
4 : [[], [], -10000],
5 : [[], [], -10000],
6 : [[], [], -10000]}
sizes.add(size)
if pos>posmax:
posmax=pos
d[0] = {0 : [[], [], 0],
1 : [[], [], 0],
2 : [[], [], 0],
3 : [[], [], 0],
4 : [[], [], 0],
5 : [[], [], 0],
6 : [[], [], 0]}
sizes = list(sizes)
sizes.sort()
sizemax = sizes[-1]
for (pos, size, score, prediction) in liste_scores:
#Pour mettre à jour le plus haut score, il faut que:
#- le score de l'intervalle considéré soit plus grand que le score courant (LE PLUS HAUT SCORE)
#- il y ait une entrée dans le dico correspondant au début de l'intervalle considéré (LES INTERVALLES SE TOUCHENT)
#- l'intervalle considéré
if d.has_key(pos-size):
#Trajectoires précédentes
precedent = d[pos-size]
#Rajout de la trajectoire considéré à la précédente
for [sommets, predicts, old_score] in precedent.values():
path_length_old = len(predicts)
#print 'path_length_old: ', path_length_old
if path_length_old < 6:
if d[pos][path_length_old+1][2] < old_score + score:
d[pos][path_length_old+1] = [sommets+[pos], predicts+[prediction], old_score+score]
## print "append at ", pos,
## raw_input()
del precedent
segs, preds, score = d[posmax][6]
print
print "##########################"
print " Programmation dynamique: "
print "##########################"
print "Segmentation: ", segs
print "Prediction: ", "".join(preds)
print "Score total: ", score
return "".join(preds), segs
def get_prediction(model, captcha, parent):
print
print "Computing scores..."
liste_scores = compute_scores_list(model, captcha, parent=None)
print "Done."
print
print "Solving optimization problem..."
preds, segs = use_dynamic_programming(liste_scores)
print "Done."
print
#Prédiction
parent.res.SetLabel(preds)
#Image segmentée
segmented_captcha = parent.beau_captcha.convert("RGB")
h = segmented_captcha.size[1]
for x in segs:
for y in xrange(0, h):
segmented_captcha.putpixel((x*parent.zoom, y), (255,0,0))
parent.SetGraphImage(segmented_captcha)
parent.actif = False
parent.launchPredictionButton.SetLabel("Lancer la prédiction")
if __name__ == "__main__":
MODEL_FILE = "Hotmail/Models/model_31x31_3DE2MT_DXDY.svm"
#MODEL_FILE = "Hotmail/Models/model_31x31_3DE2MT_classes.svm"
CAPTCHA_FILE = os.path.join("Hotmail", "Rough Captchas", 'Image011.jpg')
#Chargement du modèle
model = Break_Captcha_util.load_model(MODEL_FILE)
#Préprocessing du captcha
captcha, beau_captcha = Break_Captcha_util.preprocess_captcha_part(CAPTCHA_FILE)
#Calcul des scores
liste_scores = compute_scores_list(model, captcha)
#Chargement des scores sauvegardés
## f=open('scores.pck')
## liste_scores = pickle.load(f)
## f.close()
use_dynamic_programming(liste_scores)
raw_input()