-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path39_hyperparameters_grid_search_keras.py
67 lines (51 loc) · 2.29 KB
/
39_hyperparameters_grid_search_keras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# How to use keras models in scikit learn
# Keras models can be used in scikit-learn by wrapping them with the
# KerasClassifier or KerasRegressor class.
# Grid search is a model hyperparameter optimization technique.
# In scikit-learn this technique is provided in the GridSearchCV class.
# When constructing this class you must provide a dictionary of
# hyperparameters to evaluate in the param_grid argument. This is a map
# of the model parameter name and an array of values to try.
# By default, the grid search will only use one thread. By setting the n_jobs
# argument in the GridSearchCV constructor to -1, the process will use all cores
# on your machine. Depending on your Keras backend, this may interfere with the
# main neural network training process.
# Use scikit-learn to grid search the batch size and epochs
import numpy
from sklearn.model_selection import GridSearchCV
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasClassifier
# Function to create model, required for KerasClassifier
def create_model():
# create model
model = Sequential()
model.add(Dense(12, input_dim=8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
# fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)
# load dataset
dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
# split into input (X) and output (Y) variables
X = dataset[:,0:8]
Y = dataset[:,8]
# create model
model = KerasClassifier(build_fn=create_model, verbose=0)
# define the grid search parameters
batch_size = [10, 20, 40, 60, 80, 100]
epochs = [10, 50, 100]
param_grid = dict(batch_size=batch_size, epochs=epochs)
grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=-1, cv=3)
# n_jobs = -1 may not run as it uses all cores of the machine
grid_result = grid.fit(X, Y)
# summarize results
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
means = grid_result.cv_results_['mean_test_score']
stds = grid_result.cv_results_['std_test_score']
params = grid_result.cv_results_['params']
for mean, stdev, param in zip(means, stds, params):
print("%f (%f) with: %r" % (mean, stdev, param))