-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path84_mlp_time_series_forecasting.py
158 lines (126 loc) · 4.35 KB
/
84_mlp_time_series_forecasting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
# univariate mlp example
from numpy import array
from keras.models import Sequential
from keras.layers import Dense
# define dataset
X = array([[10, 20, 30], [20, 30, 40], [30, 40, 50], [40, 50, 60]])
y = array([40, 50, 60, 70])
# define model
model = Sequential()
model.add(Dense(100, activation='relu', input_dim=3))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')
# fit model
model.fit(X, y, epochs=2000, verbose=0)
# demonstrate prediction
x_input = array([50, 60, 70])
x_input = x_input.reshape((1, 3))
yhat = model.predict(x_input, verbose=0)
print(yhat)
# univariate cnn example
from numpy import array
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Flatten
from keras.layers.convolutional import Conv1D
from keras.layers.convolutional import MaxPooling1D
# define dataset
X = array([[10, 20, 30], [20, 30, 40], [30, 40, 50], [40, 50, 60]])
y = array([40, 50, 60, 70])
# reshape from [samples, timesteps] into [samples, timesteps, features]
X = X.reshape((X.shape[0], X.shape[1], 1))
# define model
model = Sequential()
model.add(Conv1D(filters=64, kernel_size=2, activation='relu', input_shape=(3, 1)))
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(50, activation='relu'))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')
# fit model
model.fit(X, y, epochs=1000, verbose=0)
# demonstrate prediction
x_input = array([50, 60, 70])
x_input = x_input.reshape((1, 3, 1))
yhat = model.predict(x_input, verbose=0)
print(yhat)
# univariate lstm example
from numpy import array
from keras.models import Sequential
from keras.layers import LSTM
from keras.layers import Dense
# define dataset
X = array([[10, 20, 30], [20, 30, 40], [30, 40, 50], [40, 50, 60]])
y = array([40, 50, 60, 70])
# reshape from [samples, timesteps] into [samples, timesteps, features]
X = X.reshape((X.shape[0], X.shape[1], 1))
# define model
model = Sequential()
model.add(LSTM(50, activation='relu', input_shape=(3, 1)))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')
# fit model
model.fit(X, y, epochs=1000, verbose=0)
# demonstrate prediction
x_input = array([50, 60, 70])
x_input = x_input.reshape((1, 3, 1))
yhat = model.predict(x_input, verbose=0)
print(yhat)
# univariate cnn-lstm example
from numpy import array
from keras.models import Sequential
from keras.layers import LSTM
from keras.layers import Dense
from keras.layers import Flatten
from keras.layers import TimeDistributed
from keras.layers.convolutional import Conv1D
from keras.layers.convolutional import MaxPooling1D
# define dataset
X = array([[10, 20, 30, 40], [20, 30, 40, 50], [30, 40, 50, 60], [40, 50, 60, 70]])
y = array([50, 60, 70, 80])
# reshape from [samples, timesteps] into [samples, subsequences, timesteps, features]
X = X.reshape((X.shape[0], 2, 2, 1))
# define model
model = Sequential()
model.add(TimeDistributed(Conv1D(filters=64, kernel_size=1, activation='relu'), input_shape=(None, 2, 1)))
model.add(TimeDistributed(MaxPooling1D(pool_size=2)))
model.add(TimeDistributed(Flatten()))
model.add(LSTM(50, activation='relu'))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')
# fit model
model.fit(X, y, epochs=500, verbose=0)
# demonstrate prediction
x_input = array([50, 60, 70, 80])
x_input = x_input.reshape((1, 2, 2, 1))
yhat = model.predict(x_input, verbose=0)
print(yhat)
# multi-step encoder-decoder lstm example
from numpy import array
from keras.models import Sequential
from keras.layers import LSTM
from keras.layers import Dense
from keras.layers import RepeatVector
from keras.layers import TimeDistributed
# define dataset
X = array([[10, 20, 30], [20, 30, 40], [30, 40, 50], [40, 50, 60]])
y = array([[40,50],[50,60],[60,70],[70,80]])
# reshape from [samples, timesteps] into [samples, timesteps, features]
X = X.reshape((X.shape[0], X.shape[1], 1))
y = y.reshape((y.shape[0], y.shape[1], 1))
# define model
model = Sequential()
model.add(LSTM(100, activation='relu', input_shape=(3, 1)))
model.add(RepeatVector(2))
model.add(LSTM(100, activation='relu', return_sequences=True))
model.add(TimeDistributed(Dense(1)))
model.compile(optimizer='adam', loss='mse')
# fit model
model.fit(X, y, epochs=100, verbose=0)
# demonstrate prediction
x_input = array([50, 60, 70])
x_input = x_input.reshape((1, 3, 1))
yhat = model.predict(x_input, verbose=0)
print(yhat)