-
Notifications
You must be signed in to change notification settings - Fork 4
/
server.go
3198 lines (2827 loc) · 98.9 KB
/
server.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright (c) 2013-2017 The btcsuite developers
// Copyright (c) 2015-2018 The Decred developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package main
import (
"bytes"
"crypto/rand"
"crypto/tls"
"encoding/binary"
"fmt"
"math"
mathrand "math/rand"
"net"
"runtime"
"sort"
"strconv"
"strings"
"sync"
"sync/atomic"
"time"
"github.com/pkt-cash/PKT-FullNode/addrmgr"
"github.com/pkt-cash/PKT-FullNode/addrmgr/addrutil"
"github.com/pkt-cash/PKT-FullNode/addrmgr/externaladdrs"
"github.com/pkt-cash/PKT-FullNode/blockchain"
"github.com/pkt-cash/PKT-FullNode/blockchain/indexers"
"github.com/pkt-cash/PKT-FullNode/btcutil"
"github.com/pkt-cash/PKT-FullNode/btcutil/bloom"
"github.com/pkt-cash/PKT-FullNode/btcutil/er"
"github.com/pkt-cash/PKT-FullNode/btcutil/util/mailbox"
"github.com/pkt-cash/PKT-FullNode/chaincfg"
"github.com/pkt-cash/PKT-FullNode/chaincfg/chainhash"
"github.com/pkt-cash/PKT-FullNode/connmgr"
"github.com/pkt-cash/PKT-FullNode/connmgr/banmgr"
"github.com/pkt-cash/PKT-FullNode/database"
"github.com/pkt-cash/PKT-FullNode/mempool"
"github.com/pkt-cash/PKT-FullNode/mining"
"github.com/pkt-cash/PKT-FullNode/mining/cpuminer"
"github.com/pkt-cash/PKT-FullNode/netsync"
"github.com/pkt-cash/PKT-FullNode/peer"
"github.com/pkt-cash/PKT-FullNode/pktconfig/version"
"github.com/pkt-cash/PKT-FullNode/pktlog/log"
"github.com/pkt-cash/PKT-FullNode/txscript"
"github.com/pkt-cash/PKT-FullNode/wire"
"github.com/pkt-cash/PKT-FullNode/wire/protocol"
)
const (
// defaultServices describes the default services that are supported by
// the server.
defaultServices = protocol.SFNodeNetwork | protocol.SFNodeBloom |
protocol.SFNodeWitness | protocol.SFNodeCF
// defaultRequiredServices describes the default services that are
// required to be supported by outbound peers.
defaultRequiredServices = protocol.SFNodeNetwork
// defaultTargetOutbound is the default number of outbound peers to
// target. We are normalizing the Bitcoin Core in allowing 16 here,
// For Bitcoin Core latest Bitcoin Core, 14 connections are used for
// full relaying and 2 are used for "block only" "fast" connections,
// although we don't yet make such a distinction.
defaultTargetOutbound = 14
// connectionRetryInterval is the base amount of time to wait in between
// retries when connecting to persistent peers. It is adjusted by the
// number of retries such that there is a retry backoff.
connectionRetryInterval = time.Second * 5
)
// simpleAddr implements the net.Addr interface with two struct fields
type simpleAddr struct {
net, addr string
}
// String returns the address.
//
// This is part of the net.Addr interface.
func (a simpleAddr) String() string {
return a.addr
}
// Network returns the network.
//
// This is part of the net.Addr interface.
func (a simpleAddr) Network() string {
return a.net
}
// Ensure simpleAddr implements the net.Addr interface.
var _ net.Addr = simpleAddr{}
// broadcastMsg provides the ability to house a bitcoin message to be broadcast
// to all connected peers except specified excluded peers.
type broadcastMsg struct {
message wire.Message
excludePeers []*serverPeer
}
// broadcastInventoryAdd is a type used to declare that the InvVect it contains
// needs to be added to the rebroadcast map
type broadcastInventoryAdd relayMsg
// broadcastInventoryDel is a type used to declare that the InvVect it contains
// needs to be removed from the rebroadcast map
type broadcastInventoryDel *wire.InvVect
// relayMsg packages an inventory vector along with the newly discovered
// inventory so the relay has access to that information.
type relayMsg struct {
invVect *wire.InvVect
data interface{}
}
// updatePeerHeightsMsg is a message sent from the blockmanager to the server
// after a new block has been accepted. The purpose of the message is to update
// the heights of peers that were known to announce the block before we
// connected it to the main chain or recognized it as an orphan. With these
// updates, peer heights will be kept up to date, allowing for fresh data when
// selecting sync peer candidacy.
type updatePeerHeightsMsg struct {
newHash *chainhash.Hash
newHeight int32
originPeer *peer.Peer
}
// peerState maintains state of inbound, persistent, outbound peers as well
// as banned peers and outbound groups.
type peerState struct {
inboundPeers map[int32]*serverPeer
outboundPeers map[int32]*serverPeer
persistentPeers map[int32]*serverPeer
banned map[string]time.Time
outboundGroups map[string]int
}
// Count returns the count of all known peers.
func (ps *peerState) Count() int {
return len(ps.inboundPeers) + len(ps.outboundPeers) +
len(ps.persistentPeers)
}
// forAllOutboundPeers is a helper function that runs closure on all outbound
// peers known to peerState.
func (ps *peerState) forAllOutboundPeers(closure func(sp *serverPeer)) {
for _, e := range ps.outboundPeers {
closure(e)
}
for _, e := range ps.persistentPeers {
closure(e)
}
}
// forAllPeers is a helper function that runs closure on all peers known to
// peerState.
func (ps *peerState) forAllPeers(closure func(sp *serverPeer)) {
for _, e := range ps.inboundPeers {
closure(e)
}
ps.forAllOutboundPeers(closure)
}
// cfHeaderKV is a tuple of a filter header and its associated block hash. The
// struct is used to cache cfcheckpt responses.
type cfHeaderKV struct {
blockHash chainhash.Hash
filterHeader chainhash.Hash
}
// server provides a bitcoin server for handling communications to and from
// bitcoin peers.
type server struct {
// The following variables must only be used atomically.
// Putting the uint64s first makes them 64-bit aligned for 32-bit systems.
bytesReceived uint64 // Total bytes received from all peers since start.
bytesSent uint64 // Total bytes sent by all peers since start.
started int32
shutdown int32
startupTime int64
chainParams *chaincfg.Params
addrManager *addrmgr.AddrManager
connManager *connmgr.ConnManager
sigCache *txscript.SigCache
hashCache *txscript.HashCache
rpcServer *rpcServer
syncManager *netsync.SyncManager
chain *blockchain.BlockChain
txMemPool *mempool.TxPool
cpuMiner *cpuminer.CPUMiner
modifyRebroadcastInv chan interface{}
newPeers chan *serverPeer
donePeers chan *serverPeer
banPeers chan *serverPeer
query chan interface{}
relayInv chan relayMsg
broadcast chan broadcastMsg
peerHeightsUpdate chan updatePeerHeightsMsg
wg sync.WaitGroup
quit chan struct{}
nat NAT
db database.DB
timeSource blockchain.MedianTimeSource
services protocol.ServiceFlag
banMgr banmgr.BanMgr
// The following fields are used for optional indexes. They will be nil
// if the associated index is not enabled. These fields are set during
// initial creation of the server and never changed afterwards, so they
// do not need to be protected for concurrent access.
txIndex *indexers.TxIndex
addrIndex *indexers.AddrIndex
cfIndex *indexers.CfIndex
// The fee estimator keeps track of how long transactions are left in
// the mempool before they are mined into blocks.
feeEstimator *mempool.FeeEstimator
// cfCheckptCaches stores a cached slice of filter headers for cfcheckpt
// messages for each filter type.
cfCheckptCaches map[wire.FilterType][]cfHeaderKV
cfCheckptCachesMtx sync.RWMutex
// agentBlacklist is a list of blacklisted substrings by which to filter
// user agents.
agentBlacklist []string
// agentWhitelist is a list of whitelisted user agent substrings, no
// whitelisting will be applied if the list is empty or nil.
agentWhitelist []string
}
// serverPeer extends the peer to maintain state shared by the server and
// the blockmanager.
type serverPeer struct {
// The following variables must only be used atomically
feeFilter int64
*peer.Peer
connReq *connmgr.ConnReq
server *server
persistent bool
continueHash *chainhash.Hash
relayMtx sync.Mutex
disableRelayTx bool
sentAddrs bool
isWhitelisted bool
filter *bloom.Filter
addressesMtx sync.RWMutex
knownAddresses map[string]struct{}
quit chan struct{}
// The following chans are used to sync blockmanager and server.
txProcessed chan struct{}
blockProcessed chan struct{}
}
// newServerPeer returns a new serverPeer instance. The peer needs to be set by
// the caller.
func newServerPeer(s *server, isPersistent bool) *serverPeer {
return &serverPeer{
server: s,
persistent: isPersistent,
filter: bloom.LoadFilter(nil),
knownAddresses: make(map[string]struct{}),
quit: make(chan struct{}),
txProcessed: make(chan struct{}, 1),
blockProcessed: make(chan struct{}, 1),
}
}
// newestBlock returns the current best block hash and height using the format
// required by the configuration for the peer package.
func (sp *serverPeer) newestBlock() (*chainhash.Hash, int32, er.R) {
best := sp.server.chain.BestSnapshot()
return &best.Hash, best.Height, nil
}
// addKnownAddresses adds the given addresses to the set of known addresses to
// the peer to prevent sending duplicate addresses.
func (sp *serverPeer) addKnownAddresses(addresses []*wire.NetAddress) {
sp.addressesMtx.Lock()
for _, na := range addresses {
sp.knownAddresses[addrutil.NetAddressKey(na)] = struct{}{}
}
sp.addressesMtx.Unlock()
}
// addressKnown true if the given address is already known to the peer.
// XXX trn safe for concurrent callers?
func (sp *serverPeer) addressKnown(na *wire.NetAddress) bool {
sp.addressesMtx.Lock()
defer sp.addressesMtx.Unlock()
_, exists := sp.knownAddresses[addrutil.NetAddressKey(na)]
return exists
}
// setDisableRelayTx toggles relaying of transactions for the given peer.
// It is safe for concurrent access.
func (sp *serverPeer) setDisableRelayTx(disable bool) {
sp.relayMtx.Lock()
sp.disableRelayTx = disable
sp.relayMtx.Unlock()
}
// relayTxDisabled returns whether or not relaying of transactions for the given
// peer is disabled.
// It is safe for concurrent access.
func (sp *serverPeer) relayTxDisabled() bool {
sp.relayMtx.Lock()
isDisabled := sp.disableRelayTx
sp.relayMtx.Unlock()
return isDisabled
}
// pushAddrMsg sends an addr message to the connected peer using the provided
// addresses.
func (sp *serverPeer) pushAddrMsg(addresses []*wire.NetAddress) {
// Filter addresses already known to the peer.
addrs := make([]*wire.NetAddress, 0, len(addresses))
for _, addr := range addresses {
if !sp.addressKnown(addr) {
addrs = append(addrs, addr)
}
}
known, err := sp.PushAddrMsg(addrs)
if err != nil {
log.Errorf("Can't push address message to %s: %v", sp.Peer, err)
sp.Disconnect()
return
}
sp.addKnownAddresses(known)
}
// addBanScore increases the persistent and decaying ban score fields by the
// values passed as parameters. If the resulting score exceeds half of the ban
// threshold, a warning is logged including the reason provided. Further, if
// the score is above the ban threshold, the peer will be banned and
// disconnected.
func (sp *serverPeer) addBanScore(persistent, transient uint32, reason string) {
if sp.server.banMgr.AddBanScore(sp.Addr(), persistent, transient, reason) {
sp.server.BanPeer(sp)
sp.Disconnect()
}
}
// hasServices returns whether or not the provided advertised service flags have
// all of the provided desired service flags set.
func hasServices(advertised, desired protocol.ServiceFlag) bool {
return advertised&desired == desired
}
// OnVersion is invoked when a peer receives a version bitcoin message
// and is used to negotiate the protocol version details as well as kick start
// the communications.
func (sp *serverPeer) OnVersion(_ *peer.Peer, msg *wire.MsgVersion) *wire.MsgReject {
// Update the address manager with the advertised services for outbound
// connections in case they have changed. This is not done for inbound
// connections to help prevent malicious behavior and is skipped when
// running on the simulation test network since it is only intended to
// connect to specified peers and actively avoids advertising and
// connecting to discovered peers.
//
// NOTE: This is done before rejecting peers that are too old to ensure
// it is updated regardless in the case a new minimum protocol version is
// enforced and the remote node has not upgraded yet.
isInbound := sp.Inbound()
remoteAddr := sp.NA()
addrManager := sp.server.addrManager
if !cfg.SimNet && !isInbound {
addrManager.SetServices(remoteAddr, msg.Services)
}
// Ignore peers that have a protcol version that is too old. The peer
// negotiation logic will disconnect it after this callback returns.
if msg.ProtocolVersion < int32(peer.MinAcceptableProtocolVersion) {
return nil
}
// Reject outbound peers that are not full nodes.
wantServices := protocol.SFNodeNetwork
if !isInbound && !hasServices(msg.Services, wantServices) {
missingServices := wantServices & ^msg.Services
log.Debugf("Rejecting peer %s with services %v due to not "+
"providing desired services %v", sp.Peer, msg.Services,
missingServices)
reason := fmt.Sprintf("required services %#x not offered",
uint64(missingServices))
return wire.NewMsgReject(msg.Command(), wire.RejectNonstandard, reason)
}
if !cfg.SimNet && !isInbound {
// After soft-fork activation, only make outbound
// connection to peers if they flag that they're segwit
// enabled.
chain := sp.server.chain
segwitActive, err := chain.IsDeploymentActive(chaincfg.DeploymentSegwit)
if err != nil {
log.Errorf("Unable to query for segwit soft-fork state: %v",
err)
return nil
}
if segwitActive && !sp.IsWitnessEnabled() {
log.Infof("Disconnecting non-segwit peer %v, isn't segwit "+
"enabled and we need more segwit enabled peers", sp)
sp.Disconnect()
return nil
}
}
// Add the remote peer time as a sample for creating an offset against
// the local clock to keep the network time in sync.
sp.server.timeSource.AddTimeSample(sp.Addr(), msg.Timestamp)
// Choose whether or not to relay transactions before a filter command
// is received.
sp.setDisableRelayTx(msg.DisableRelayTx)
return nil
}
// OnVerAck is invoked when a peer receives a verack bitcoin message and is used
// to kick start communication with them.
func (sp *serverPeer) OnVerAck(_ *peer.Peer, _ *wire.MsgVerAck) {
sp.server.AddPeer(sp)
}
// OnMemPool is invoked when a peer receives a mempool bitcoin message.
// It creates and sends an inventory message with the contents of the memory
// pool up to the maximum inventory allowed per message. When the peer has a
// bloom filter loaded, the contents are filtered accordingly.
func (sp *serverPeer) OnMemPool(_ *peer.Peer, msg *wire.MsgMemPool) {
// Only allow mempool requests if the server has bloom filtering
// enabled.
if sp.server.services&protocol.SFNodeBloom != protocol.SFNodeBloom {
log.Debugf("peer %v sent mempool request with bloom "+
"filtering disabled -- disconnecting", sp)
sp.Disconnect()
return
}
// A decaying ban score increase is applied to prevent flooding.
// The ban score accumulates and passes the ban threshold if a burst of
// mempool messages comes from a peer. The score decays each minute to
// half of its value.
sp.addBanScore(0, 33, "mempool")
// Generate inventory message with the available transactions in the
// transaction memory pool. Limit it to the max allowed inventory
// per message. The NewMsgInvSizeHint function automatically limits
// the passed hint to the maximum allowed, so it's safe to pass it
// without double checking it here.
txMemPool := sp.server.txMemPool
txDescs := txMemPool.TxDescs()
invMsg := wire.NewMsgInvSizeHint(uint(len(txDescs)))
for _, txDesc := range txDescs {
// Either add all transactions when there is no bloom filter,
// or only the transactions that match the filter when there is
// one.
if !sp.filter.IsLoaded() || sp.filter.MatchTxAndUpdate(txDesc.Tx) {
iv := wire.NewInvVect(wire.InvTypeTx, txDesc.Tx.Hash())
invMsg.AddInvVect(iv)
if len(invMsg.InvList)+1 > wire.MaxInvPerMsg {
break
}
}
}
// Send the inventory message if there is anything to send.
if len(invMsg.InvList) > 0 {
sp.QueueMessage(invMsg, nil)
}
}
// OnTx is invoked when a peer receives a tx bitcoin message. It blocks
// until the bitcoin transaction has been fully processed. Unlock the block
// handler this does not serialize all transactions through a single thread
// transactions don't rely on the previous one in a linear fashion like blocks.
func (sp *serverPeer) OnTx(_ *peer.Peer, msg *wire.MsgTx) {
if cfg.BlocksOnly {
log.Tracef("Ignoring tx %v from %v - blocksonly enabled",
msg.TxHash(), sp)
return
}
// Add the transaction to the known inventory for the peer.
// Convert the raw MsgTx to a btcutil.Tx which provides some convenience
// methods and things such as hash caching.
tx := btcutil.NewTx(msg)
iv := wire.NewInvVect(wire.InvTypeTx, tx.Hash())
sp.AddKnownInventory(iv)
// Queue the transaction up to be handled by the sync manager and
// intentionally block further receives until the transaction is fully
// processed and known good or bad. This helps prevent a malicious peer
// from queuing up a bunch of bad transactions before disconnecting (or
// being disconnected) and wasting memory.
sp.server.syncManager.QueueTx(tx, sp.Peer, sp.txProcessed)
<-sp.txProcessed
}
// OnBlock is invoked when a peer receives a block bitcoin message. It
// blocks until the bitcoin block has been fully processed.
func (sp *serverPeer) OnBlock(_ *peer.Peer, msg *wire.MsgBlock, buf []byte) {
// Convert the raw MsgBlock to a btcutil.Block which provides some
// convenience methods and things such as hash caching.
block := btcutil.NewBlockFromBlockAndBytes(msg, buf)
// Add the block to the known inventory for the peer.
iv := wire.NewInvVect(wire.InvTypeBlock, block.Hash())
sp.AddKnownInventory(iv)
// Queue the block up to be handled by the block
// manager and intentionally block further receives
// until the bitcoin block is fully processed and known
// good or bad. This helps prevent a malicious peer
// from queuing up a bunch of bad blocks before
// disconnecting (or being disconnected) and wasting
// memory. Additionally, this behavior is depended on
// by at least the block acceptance test tool as the
// reference implementation processes blocks in the same
// thread and therefore blocks further messages until
// the bitcoin block has been fully processed.
sp.server.syncManager.QueueBlock(block, sp.Peer, sp.blockProcessed)
<-sp.blockProcessed
}
// OnInv is invoked when a peer receives an inv bitcoin message and is
// used to examine the inventory being advertised by the remote peer and react
// accordingly. We pass the message down to blockmanager which will call
// QueueMessage with any appropriate responses.
func (sp *serverPeer) OnInv(_ *peer.Peer, msg *wire.MsgInv) {
if !cfg.BlocksOnly {
if len(msg.InvList) > 0 {
sp.server.syncManager.QueueInv(msg, sp.Peer)
}
return
}
newInv := wire.NewMsgInvSizeHint(uint(len(msg.InvList)))
for _, invVect := range msg.InvList {
if invVect.Type == wire.InvTypeTx {
log.Tracef("Ignoring tx %v in inv from %v -- "+
"blocksonly enabled", invVect.Hash, sp)
if sp.ProtocolVersion() >= protocol.BIP0037Version {
log.Infof("Peer %v is announcing "+
"transactions -- disconnecting", sp)
sp.Disconnect()
return
}
continue
}
err := newInv.AddInvVect(invVect)
if err != nil {
log.Errorf("Failed to add inventory vector: %v", err)
break
}
}
if len(newInv.InvList) > 0 {
sp.server.syncManager.QueueInv(newInv, sp.Peer)
}
}
// OnHeaders is invoked when a peer receives a headers bitcoin
// message. The message is passed down to the sync manager.
func (sp *serverPeer) OnHeaders(_ *peer.Peer, msg *wire.MsgHeaders) {
sp.server.syncManager.QueueHeaders(msg, sp.Peer)
}
// handleGetData is invoked when a peer receives a getdata bitcoin message and
// is used to deliver block and transaction information.
func (sp *serverPeer) OnGetData(_ *peer.Peer, msg *wire.MsgGetData) {
numAdded := 0
notFound := wire.NewMsgNotFound()
length := len(msg.InvList)
// A decaying ban score increase is applied to prevent exhausting resources
// with unusually large inventory queries.
// Requesting more than the maximum inventory vector length within a short
// period of time yields a score above the default ban threshold. Sustained
// bursts of small requests are not penalized as that would potentially ban
// peers performing IBD.
// This incremental score decays each minute to half of its value.
sp.addBanScore(0, uint32(length)*99/wire.MaxInvPerMsg, "getdata")
// We wait on this wait channel periodically to prevent queuing
// far more data than we can send in a reasonable time, wasting memory.
// The waiting occurs after the database fetch for the next one to
// provide a little pipelining.
var waitChan chan struct{}
doneChan := make(chan struct{}, 1)
for i, iv := range msg.InvList {
var c chan struct{}
// If this will be the last message we send.
if i == length-1 && len(notFound.InvList) == 0 {
c = doneChan
} else if (i+1)%3 == 0 {
// Buffered so as to not make the send goroutine block.
c = make(chan struct{}, 1)
}
var err er.R
switch iv.Type {
case wire.InvTypeWitnessTx:
err = sp.server.pushTxMsg(sp, &iv.Hash, c, waitChan, wire.WitnessEncoding)
case wire.InvTypeTx:
err = sp.server.pushTxMsg(sp, &iv.Hash, c, waitChan, wire.BaseEncoding)
case wire.InvTypeWitnessBlock:
err = sp.server.pushBlockMsg(sp, &iv.Hash, c, waitChan, wire.WitnessEncoding)
case wire.InvTypeBlock:
err = sp.server.pushBlockMsg(sp, &iv.Hash, c, waitChan, wire.BaseEncoding)
case wire.InvTypeFilteredWitnessBlock:
err = sp.server.pushMerkleBlockMsg(sp, &iv.Hash, c, waitChan, wire.WitnessEncoding)
case wire.InvTypeFilteredBlock:
err = sp.server.pushMerkleBlockMsg(sp, &iv.Hash, c, waitChan, wire.BaseEncoding)
default:
log.Warnf("Unknown type in inventory request %d",
iv.Type)
continue
}
if err != nil {
notFound.AddInvVect(iv)
// When there is a failure fetching the final entry
// and the done channel was sent in due to there
// being no outstanding not found inventory, consume
// it here because there is now not found inventory
// that will use the channel momentarily.
if i == len(msg.InvList)-1 && c != nil {
<-c
}
}
numAdded++
waitChan = c
}
if len(notFound.InvList) != 0 {
sp.QueueMessage(notFound, doneChan)
}
// Wait for messages to be sent. We can send quite a lot of data at this
// point and this will keep the peer busy for a decent amount of time.
// We don't process anything else by them in this time so that we
// have an idea of when we should hear back from them - else the idle
// timeout could fire when we were only half done sending the blocks.
if numAdded > 0 {
<-doneChan
}
}
// OnGetBlocks is invoked when a peer receives a getblocks bitcoin
// message.
func (sp *serverPeer) OnGetBlocks(_ *peer.Peer, msg *wire.MsgGetBlocks) {
// Find the most recent known block in the best chain based on the block
// locator and fetch all of the block hashes after it until either
// wire.MaxBlocksPerMsg have been fetched or the provided stop hash is
// encountered.
//
// Use the block after the genesis block if no other blocks in the
// provided locator are known. This does mean the client will start
// over with the genesis block if unknown block locators are provided.
//
// This mirrors the behavior in the reference implementation.
chain := sp.server.chain
hashList := chain.LocateBlocks(msg.BlockLocatorHashes, &msg.HashStop,
wire.MaxBlocksPerMsg)
// Generate inventory message.
invMsg := wire.NewMsgInv()
for i := range hashList {
iv := wire.NewInvVect(wire.InvTypeBlock, &hashList[i])
invMsg.AddInvVect(iv)
}
// Send the inventory message if there is anything to send.
if len(invMsg.InvList) > 0 {
invListLen := len(invMsg.InvList)
if invListLen == wire.MaxBlocksPerMsg {
// Intentionally use a copy of the final hash so there
// is not a reference into the inventory slice which
// would prevent the entire slice from being eligible
// for GC as soon as it's sent.
continueHash := invMsg.InvList[invListLen-1].Hash
sp.continueHash = &continueHash
}
sp.QueueMessage(invMsg, nil)
}
}
// OnGetHeaders is invoked when a peer receives a getheaders bitcoin
// message.
func (sp *serverPeer) OnGetHeaders(_ *peer.Peer, msg *wire.MsgGetHeaders) {
// Ignore getheaders requests if not in sync.
if !sp.server.syncManager.IsCurrent() {
return
}
// Find the most recent known block in the best chain based on the block
// locator and fetch all of the headers after it until either
// wire.MaxBlockHeadersPerMsg have been fetched or the provided stop
// hash is encountered.
//
// Use the block after the genesis block if no other blocks in the
// provided locator are known. This does mean the client will start
// over with the genesis block if unknown block locators are provided.
//
// This mirrors the behavior in the reference implementation.
chain := sp.server.chain
headers := chain.LocateHeaders(msg.BlockLocatorHashes, &msg.HashStop)
// Send found headers to the requesting peer.
blockHeaders := make([]*wire.BlockHeader, len(headers))
for i := range headers {
blockHeaders[i] = &headers[i]
}
sp.QueueMessage(&wire.MsgHeaders{Headers: blockHeaders}, nil)
}
// OnGetCFilters is invoked when a peer receives a getcfilters bitcoin message.
func (sp *serverPeer) OnGetCFilters(_ *peer.Peer, msg *wire.MsgGetCFilters) {
// Ignore getcfilters requests if we don't have the necessary blocks yet
if _, err := sp.server.chain.BlockByHash(&msg.StopHash); err != nil {
log.Infof("Not serving filter %v to peer %v because we are not synced",
msg.FilterType, sp.String())
return
}
// We'll also ensure that the remote party is requesting a set of
// filters that we actually currently maintain.
switch msg.FilterType {
case wire.GCSFilterRegular:
break
default:
log.Infof("Filter request for unknown filter: %v from %v",
msg.FilterType, sp.String())
return
}
hashes, err := sp.server.chain.HeightToHashRange(
int32(msg.StartHeight), &msg.StopHash, wire.MaxGetCFiltersReqRange,
)
if err != nil {
log.Debugf("Invalid getcfilters request from [%v]: %v", sp.String(), err)
return
}
// Create []*chainhash.Hash from []chainhash.Hash to pass to
// FiltersByBlockHashes.
hashPtrs := make([]*chainhash.Hash, len(hashes))
for i := range hashes {
hashPtrs[i] = &hashes[i]
}
filters, err := sp.server.cfIndex.FiltersByBlockHashes(
hashPtrs, msg.FilterType,
)
if err != nil {
log.Errorf("Error retrieving cfilters: %v", err)
return
}
for i, filterBytes := range filters {
if len(filterBytes) == 0 {
log.Warnf("Could not obtain cfilter for %v",
hashes[i])
return
}
filterMsg := wire.NewMsgCFilter(
msg.FilterType, &hashes[i], filterBytes,
)
sp.QueueMessage(filterMsg, nil)
}
}
// OnGetCFHeaders is invoked when a peer receives a getcfheader bitcoin message.
func (sp *serverPeer) OnGetCFHeaders(_ *peer.Peer, msg *wire.MsgGetCFHeaders) {
// Ignore getcfilterheader requests if not in sync.
if !sp.server.syncManager.IsCurrent() {
return
}
// We'll also ensure that the remote party is requesting a set of
// headers for filters that we actually currently maintain.
switch msg.FilterType {
case wire.GCSFilterRegular:
break
default:
log.Debugf("Filter request for unknown headers for "+
"filter: %v", msg.FilterType)
return
}
startHeight := int32(msg.StartHeight)
maxResults := wire.MaxCFHeadersPerMsg
// If StartHeight is positive, fetch the predecessor block hash so we
// can populate the PrevFilterHeader field.
if msg.StartHeight > 0 {
startHeight--
maxResults++
}
// Fetch the hashes from the block index.
hashList, err := sp.server.chain.HeightToHashRange(
startHeight, &msg.StopHash, maxResults,
)
if err != nil {
log.Debugf("Invalid getcfheaders request: %v", err)
}
// This is possible if StartHeight is one greater that the height of
// StopHash, and we pull a valid range of hashes including the previous
// filter header.
if len(hashList) == 0 || (msg.StartHeight > 0 && len(hashList) == 1) {
log.Debug("No results for getcfheaders request")
return
}
// Create []*chainhash.Hash from []chainhash.Hash to pass to
// FilterHeadersByBlockHashes.
hashPtrs := make([]*chainhash.Hash, len(hashList))
for i := range hashList {
hashPtrs[i] = &hashList[i]
}
// Fetch the raw filter hash bytes from the database for all blocks.
filterHashes, err := sp.server.cfIndex.FilterHashesByBlockHashes(
hashPtrs, msg.FilterType,
)
if err != nil {
log.Errorf("Error retrieving cfilter hashes: %v", err)
return
}
// Generate cfheaders message and send it.
headersMsg := wire.NewMsgCFHeaders()
// Populate the PrevFilterHeader field.
if msg.StartHeight > 0 {
prevBlockHash := &hashList[0]
// Fetch the raw committed filter header bytes from the
// database.
headerBytes, err := sp.server.cfIndex.FilterHeaderByBlockHash(
prevBlockHash, msg.FilterType)
if err != nil {
log.Errorf("Error retrieving CF header: %v", err)
return
}
if len(headerBytes) == 0 {
log.Warnf("Could not obtain CF header for %v", prevBlockHash)
return
}
// Deserialize the hash into PrevFilterHeader.
err = headersMsg.PrevFilterHeader.SetBytes(headerBytes)
if err != nil {
log.Warnf("Committed filter header deserialize "+
"failed: %v", err)
return
}
hashList = hashList[1:]
filterHashes = filterHashes[1:]
}
// Populate HeaderHashes.
for i, hashBytes := range filterHashes {
if len(hashBytes) == 0 {
log.Warnf("Could not obtain CF hash for %v", hashList[i])
return
}
// Deserialize the hash.
filterHash, err := chainhash.NewHash(hashBytes)
if err != nil {
log.Warnf("Committed filter hash deserialize "+
"failed: %v", err)
return
}
headersMsg.AddCFHash(filterHash)
}
headersMsg.FilterType = msg.FilterType
headersMsg.StopHash = msg.StopHash
sp.QueueMessage(headersMsg, nil)
}
// OnGetCFCheckpt is invoked when a peer receives a getcfcheckpt bitcoin message.
func (sp *serverPeer) OnGetCFCheckpt(_ *peer.Peer, msg *wire.MsgGetCFCheckpt) {
// Ignore getcfcheckpt requests if not in sync.
if !sp.server.syncManager.IsCurrent() {
return
}
// We'll also ensure that the remote party is requesting a set of
// checkpoints for filters that we actually currently maintain.
switch msg.FilterType {
case wire.GCSFilterRegular:
break
default:
log.Debugf("Filter request for unknown checkpoints for "+
"filter: %v", msg.FilterType)
return
}
// Now that we know the client is fetching a filter that we know of,
// we'll fetch the block hashes et each check point interval so we can
// compare against our cache, and create new check points if necessary.
blockHashes, err := sp.server.chain.IntervalBlockHashes(
&msg.StopHash, wire.CFCheckptInterval,
)
if err != nil {
log.Debugf("Invalid getcfilters request: %v", err)
return
}
checkptMsg := wire.NewMsgCFCheckpt(
msg.FilterType, &msg.StopHash, len(blockHashes),
)
// Fetch the current existing cache so we can decide if we need to
// extend it or if its adequate as is.
sp.server.cfCheckptCachesMtx.RLock()
checkptCache := sp.server.cfCheckptCaches[msg.FilterType]
// If the set of block hashes is beyond the current size of the cache,
// then we'll expand the size of the cache and also retain the write
// lock.
var updateCache bool
if len(blockHashes) > len(checkptCache) {
// Now that we know we'll need to modify the size of the cache,
// we'll release the read lock and grab the write lock to
// possibly expand the cache size.
sp.server.cfCheckptCachesMtx.RUnlock()
sp.server.cfCheckptCachesMtx.Lock()
defer sp.server.cfCheckptCachesMtx.Unlock()
// Now that we have the write lock, we'll check again as it's
// possible that the cache has already been expanded.
checkptCache = sp.server.cfCheckptCaches[msg.FilterType]
// If we still need to expand the cache, then We'll mark that
// we need to update the cache for below and also expand the
// size of the cache in place.
if len(blockHashes) > len(checkptCache) {
updateCache = true
additionalLength := len(blockHashes) - len(checkptCache)
newEntries := make([]cfHeaderKV, additionalLength)
log.Infof("Growing size of checkpoint cache from %v to %v "+
"block hashes", len(checkptCache), len(blockHashes))
checkptCache = append(
sp.server.cfCheckptCaches[msg.FilterType],
newEntries...,
)
}
} else {
// Otherwise, we'll hold onto the read lock for the remainder
// of this method.
defer sp.server.cfCheckptCachesMtx.RUnlock()
log.Tracef("Serving stale cache of size %v",
len(checkptCache))
}
// Now that we know the cache is of an appropriate size, we'll iterate
// backwards until the find the block hash. We do this as it's possible
// a re-org has occurred so items in the db are now in the main china
// while the cache has been partially invalidated.
var forkIdx int
for forkIdx = len(blockHashes); forkIdx > 0; forkIdx-- {
if checkptCache[forkIdx-1].blockHash == blockHashes[forkIdx-1] {
break
}
}
// Now that we know the how much of the cache is relevant for this
// query, we'll populate our check point message with the cache as is.
// Shortly below, we'll populate the new elements of the cache.
for i := 0; i < forkIdx; i++ {
checkptMsg.AddCFHeader(&checkptCache[i].filterHeader)
}
// We'll now collect the set of hashes that are beyond our cache so we
// can look up the filter headers to populate the final cache.
blockHashPtrs := make([]*chainhash.Hash, 0, len(blockHashes)-forkIdx)