forked from k2-fsa/icefall
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare.sh
159 lines (135 loc) · 4.34 KB
/
prepare.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#!/usr/bin/env bash
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -eou pipefail
num_phones=39
# Here we use num_phones=39 for modeling
nj=15
stage=-1
stop_stage=100
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/timit
# You can find data, train_data.csv, test_data.csv, etc, inside it.
# You can download them from https://data.deepai.org/timit.zip
#
# - $dl_dir/lm
# This directory contains the language model(LM) downloaded from
# https://huggingface.co/luomingshuang/timit_lm, and the LM is based
# on 39 phones. About how to get these LM files, you can know it
# from https://github.com/luomingshuang/Train_LM_with_kaldilm.
#
# - lm_3_gram.arpa
# - lm_4_gram.arpa
#
# - $dl_dir/musan
# This directory contains the following directories downloaded from
# http://www.openslr.org/17/
#
# - music
# - noise
# - speech
dl_dir=$PWD/download
splits_dir=$PWD/splits_dir
. shared/parse_options.sh || exit 1
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
log "Stage -1: Download LM"
# We assume that you have installed the git-lfs, if not, you could install it
# using: `sudo apt-get install git-lfs && git-lfs install`
[ ! -e $dl_dir/lm ] && mkdir -p $dl_dir/lm
git clone https://huggingface.co/luomingshuang/timit_lm $dl_dir/lm
pushd $dl_dir/lm
git lfs pull
popd
fi
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download data"
# If you have pre-downloaded it to /path/to/timit,
# you can create a symlink
#
# ln -sfv /path/to/timit $dl_dir/timit
#
if [ ! -d $dl_dir/timit ]; then
lhotse download timit $dl_dir
fi
# If you have pre-downloaded it to /path/to/musan,
# you can create a symlink
#
# ln -sfv /path/to/musan $dl_dir/
#
if [ ! -d $dl_dir/musan ]; then
lhotse download musan $dl_dir
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare timit manifest"
# We assume that you have downloaded the timit corpus
# to $dl_dir/timit
mkdir -p data/manifests
lhotse prepare timit -p $num_phones -j $nj $dl_dir/timit/data data/manifests
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to data/musan
mkdir -p data/manifests
lhotse prepare musan $dl_dir/musan data/manifests
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Compute fbank for timit"
mkdir -p data/fbank
./local/compute_fbank_timit.py
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for musan"
mkdir -p data/fbank
./local/compute_fbank_musan.py
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Prepare phone based lang"
lang_dir=data/lang_phone
mkdir -p $lang_dir
./local/prepare_lexicon.py \
--manifests-dir data/manifests \
--lang-dir $lang_dir
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang.py --lang-dir $lang_dir
fi
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Prepare G"
# We assume you have installed kaldilm, if not, please install
# it using: pip install kaldilm
mkdir -p data/lm
if [ ! -f data/lm/G_3_gram.fst.txt ]; then
# It is used in building HLG
python3 -m kaldilm \
--read-symbol-table="data/lang_phone/words.txt" \
--disambig-symbol='#0' \
--max-order=3 \
$dl_dir/lm/lm_3_gram.arpa > data/lm/G_3_gram.fst.txt
fi
if [ ! -f data/lm/G_4_gram.fst.txt ]; then
# It is used for LM rescoring
python3 -m kaldilm \
--read-symbol-table="data/lang_phone/words.txt" \
--disambig-symbol='#0' \
--max-order=4 \
$dl_dir/lm/lm_4_gram.arpa > data/lm/G_4_gram.fst.txt
fi
fi
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
log "Stage 7: Compile HLG"
./local/compile_hlg.py --lang-dir data/lang_phone
fi