You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
changing setting sd_model_checkpoint to v2-1_768-ema-pruned.safetensors [dcd690123c]: RuntimeError
Traceback (most recent call last):
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\modules\shared.py", line 597, in set
self.data_labels[key].onchange()
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\modules\call_queue.py", line 15, in f
res = func(*args, **kwargs)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\webui.py", line 225, in
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights()), call=False)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\modules\sd_models.py", line 539, in reload_model_weights
checkpoint_config = sd_models_config.find_checkpoint_config(state_dict, checkpoint_info)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\modules\sd_models_config.py", line 106, in find_checkpoint_config
return guess_model_config_from_state_dict(state_dict, info.filename)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\modules\sd_models_config.py", line 81, in guess_model_config_from_state_dict
elif is_using_v_parameterization_for_sd2(sd):
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\modules\sd_models_config.py", line 61, in is_using_v_parameterization_for_sd2
out = (unet(x_test, torch.asarray([999], device=device), context=test_cond) - x_test).mean().item()
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\python\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\repositories\stable-diffusion-stability-ai\ldm\modules\diffusionmodules\openaimodel.py", line 797, in forward
h = module(h, emb, context)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\python\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\repositories\stable-diffusion-stability-ai\ldm\modules\diffusionmodules\openaimodel.py", line 84, in forward
x = layer(x, context)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\python\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\repositories\stable-diffusion-stability-ai\ldm\modules\attention.py", line 334, in forward
x = block(x, context=context[i])
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\python\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\repositories\stable-diffusion-stability-ai\ldm\modules\attention.py", line 269, in forward
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\repositories\stable-diffusion-stability-ai\ldm\modules\diffusionmodules\util.py", line 121, in checkpoint
return CheckpointFunction.apply(func, len(inputs), *args)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\python\lib\site-packages\torch\autograd\function.py", line 506, in apply
return super().apply(*args, **kwargs) # type: ignore[misc]
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\repositories\stable-diffusion-stability-ai\ldm\modules\diffusionmodules\util.py", line 136, in forward
output_tensors = ctx.run_function(*ctx.input_tensors)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\repositories\stable-diffusion-stability-ai\ldm\modules\attention.py", line 274, in _forward
x = self.ff(self.norm3(x)) + x
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\python\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\repositories\stable-diffusion-stability-ai\ldm\modules\attention.py", line 76, in forward
return self.net(x)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\python\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\python\lib\site-packages\torch\nn\modules\container.py", line 217, in forward
input = module(input)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\python\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\extensions-builtin\Lora\lora.py", line 400, in lora_Linear_forward
return torch.nn.Linear_forward_before_lora(self, input)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\python\lib\site-packages\torch\nn\modules\linear.py", line 114, in forward
return F.linear(input, self.weight, self.bias)
RuntimeError: mat1 and mat2 must have the same dtype
Is there anything wrong with my setting? Thanks
The text was updated successfully, but these errors were encountered:
changing setting sd_model_checkpoint to v2-1_768-ema-pruned.safetensors [dcd690123c]: RuntimeError
Traceback (most recent call last):
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\modules\shared.py", line 597, in set
self.data_labels[key].onchange()
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\modules\call_queue.py", line 15, in f
res = func(*args, **kwargs)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\webui.py", line 225, in
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights()), call=False)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\modules\sd_models.py", line 539, in reload_model_weights
checkpoint_config = sd_models_config.find_checkpoint_config(state_dict, checkpoint_info)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\modules\sd_models_config.py", line 106, in find_checkpoint_config
return guess_model_config_from_state_dict(state_dict, info.filename)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\modules\sd_models_config.py", line 81, in guess_model_config_from_state_dict
elif is_using_v_parameterization_for_sd2(sd):
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\modules\sd_models_config.py", line 61, in is_using_v_parameterization_for_sd2
out = (unet(x_test, torch.asarray([999], device=device), context=test_cond) - x_test).mean().item()
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\python\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\repositories\stable-diffusion-stability-ai\ldm\modules\diffusionmodules\openaimodel.py", line 797, in forward
h = module(h, emb, context)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\python\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\repositories\stable-diffusion-stability-ai\ldm\modules\diffusionmodules\openaimodel.py", line 84, in forward
x = layer(x, context)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\python\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\repositories\stable-diffusion-stability-ai\ldm\modules\attention.py", line 334, in forward
x = block(x, context=context[i])
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\python\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\repositories\stable-diffusion-stability-ai\ldm\modules\attention.py", line 269, in forward
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\repositories\stable-diffusion-stability-ai\ldm\modules\diffusionmodules\util.py", line 121, in checkpoint
return CheckpointFunction.apply(func, len(inputs), *args)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\python\lib\site-packages\torch\autograd\function.py", line 506, in apply
return super().apply(*args, **kwargs) # type: ignore[misc]
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\repositories\stable-diffusion-stability-ai\ldm\modules\diffusionmodules\util.py", line 136, in forward
output_tensors = ctx.run_function(*ctx.input_tensors)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\repositories\stable-diffusion-stability-ai\ldm\modules\attention.py", line 274, in _forward
x = self.ff(self.norm3(x)) + x
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\python\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\repositories\stable-diffusion-stability-ai\ldm\modules\attention.py", line 76, in forward
return self.net(x)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\python\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\python\lib\site-packages\torch\nn\modules\container.py", line 217, in forward
input = module(input)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\python\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\extensions-builtin\Lora\lora.py", line 400, in lora_Linear_forward
return torch.nn.Linear_forward_before_lora(self, input)
File "F:\AI\sd-webui-aki\sd-webui-aki-v4.1\python\lib\site-packages\torch\nn\modules\linear.py", line 114, in forward
return F.linear(input, self.weight, self.bias)
RuntimeError: mat1 and mat2 must have the same dtype
Is there anything wrong with my setting? Thanks
The text was updated successfully, but these errors were encountered: