-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSearchnode1.py
519 lines (509 loc) · 20.4 KB
/
Searchnode1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
import torch
from torch import optim
#from Dataset import SumDataset
import os
from tqdm import tqdm
#from Model import *
import numpy as np
from copy import deepcopy
import pickle
import sys
import random
#from ScheduledOptim import *
#from pythonBottom.run import finetune
#from pythonBottom.run import pre
#wandb.init("sql")
class dotdict(dict):
def __getattr__(self, name):
return self[name]
args = dotdict({
'NlLen':50,
'CodeLen':100,
'batch_size':48,
'embedding_size':256,
'WoLen':15,
'Vocsize':100,
'Nl_Vocsize':100,
'max_step':3,
'margin':0.5,
'poolsize':50,
'Code_Vocsize':100,
'num_steps':50,
'rulenum':10
})
#os.environ["CUDA_VISIBLE_DEVICES"]="5, 4"
#os.environ['CUDA_LAUNCH_BLOCKING']="1"
def save_model(model):
if not os.path.exists("checkpointSearch/"):
os.makedirs("checkpointSearch")
torch.save(model.state_dict(), 'checkpointSearch/best_model.ckpt')
def load_model(model):
assert os.path.exists('checkpointSearch/best_model.ckpt'), 'Weights for saved model not found'
model.load_state_dict(torch.load('checkpointSearch/best_model.ckpt'))
use_cuda = torch.cuda.is_available()
def gVar(data):
tensor = data
if isinstance(data, np.ndarray):
tensor = torch.from_numpy(data)
else:
assert isinstance(tensor, torch.Tensor)
if use_cuda:
tensor = tensor.cuda()
return tensor
def getAntiMask(size):
ans = np.zeros([size, size])
for i in range(size):
for j in range(0, i + 1):
ans[i, j] = 1.0
return ans
def getAdMask(size):
ans = np.zeros([size, size])
for i in range(size - 1):
ans[i, i + 1] = 1.0
return ans
def train():
train_set = SumDataset(args, "train")
#print(len(train_set.data[0]))
args.Code_Vocsize = len(train_set.Code_Voc)
args.Nl_Vocsize = len(train_set.Nl_Voc)
args.Vocsize = len(train_set.Char_Voc)
args.rulenum = len(train_set.ruledict) + args.NlLen
dev_set = SumDataset(args, "test")
data_loader = torch.utils.data.DataLoader(dataset=train_set, batch_size=args.batch_size,
shuffle=True, drop_last=True, num_workers=1)
model = Decoder(args)
load_model(model)
optimizer = optim.Adam(model.parameters(), lr=1e-4)
optimizer = ScheduledOptim(optimizer, d_model=args.embedding_size, n_warmup_steps=4000)
maxAcc= 0
maxC = 0
if torch.cuda.is_available():
print('using GPU')
#os.environ["CUDA_VISIBLE_DEVICES"] = "3"
model = model.cuda()
model = nn.DataParallel(model, device_ids=[0, 1])
antimask = gVar(getAntiMask(args.CodeLen))
#model.to()
for epoch in range(100000):
j = 0
for dBatch in tqdm(data_loader):
if j % 3000 == 0:
devloader = torch.utils.data.DataLoader(dataset=dev_set, batch_size=56,
shuffle=False, drop_last=True, num_workers=1)
model = model.eval()
accs = []
tcard = []
tmp = []
antimask2 = antimask.unsqueeze(0).repeat(56, 1, 1).unsqueeze(1)
for devBatch in tqdm(devloader):
for i in range(len(devBatch)):
devBatch[i] = gVar(devBatch[i])
with torch.no_grad():
_, pre = model(devBatch[0], devBatch[1], devBatch[2], devBatch[3], devBatch[4], devBatch[6], devBatch[7], devBatch[8], antimask2, devBatch[5])
pred = pre.argmax(dim=-1)
resmask = torch.gt(devBatch[5], 0)
acc = (torch.eq(pred, devBatch[5]) * resmask).float()#.mean(dim=-1)
predres = (1 - acc) * pred.float() * resmask.float()
accsum = torch.sum(acc, dim=-1)
'''tmp = []
for i in range(len(predres)):
tmp2 = []
for j in range(len(predres[i])):
if predres[i, j] != 0:
tmp.append((predres[i, j].item(), devBatch[5][i, j].item()))
print(tmp)'''
resTruelen = torch.sum(resmask, dim=-1).float()
for x in torch.eq(accsum, resTruelen):
if x == 1:#print(torch.eq(accsum, resTruelen))
tmp.append(1)
else:
tmp.append(0)
cnum = (torch.eq(accsum, resTruelen)).sum().float()
acc = acc.sum(dim=-1) / resTruelen
accs.append(acc.mean().item())
tcard.append(cnum.item())
#print(devBatch[5])
#print(predres)
tnum = np.sum(tcard)
acc = np.mean(accs)
#wandb.log({"accuracy":acc})
print(str(acc), str(tnum))
print(tmp)
exit(0)
if maxC < tnum or maxC == tnum and maxAcc < acc:
maxC = tnum
maxAcc = acc
print("find better acc " + str(maxAcc))
save_model(model.module)
antimask2 = antimask.unsqueeze(0).repeat(args.batch_size, 1, 1).unsqueeze(1)
model = model.train()
for i in range(len(dBatch)):
dBatch[i] = gVar(dBatch[i])
loss, _ = model(dBatch[0], dBatch[1], dBatch[2], dBatch[3], dBatch[4], dBatch[6], dBatch[7], dBatch[8], antimask2, dBatch[5])
loss = torch.mean(loss)
optimizer.zero_grad()
loss.backward()
optimizer.step_and_update_lr()
j += 1
import time
class Node:
def __init__(self, name, d, type='init'):
self.name = name
'''lst = name.split('🚀')
self.name = lst[0]
self.nameo = name
if lst[1] != 'init' and lst[1] != 'init_ter' and 'ptype' not in lst[1]:
self.namer = name
else:
self.namer = lst[0]
if '_ter' in name and name[-4:] == '_ter':
self.namer = self.name + '_ter'
self.name = self.namer'''
self.id = d
self.father = None
self.child = []
self.sibiling = None
self.expanded = False
self.fatherlistID = 0
self.treestr = ""
self.block = ""
self.num = 0
self.type = type
self.possibility = 0#max(min(np.random.normal(0.1, 0.08, 10)[0], 1), 0)
def printTree(self, r):
s = r.name + "🚀"#print(r.name)
if len(r.child) == 0:
s += "^🚀"
return s
#r.child = sorted(r.child, key=lambda x:x.name)
for c in r.child:
s += self.printTree(c)
s += "^🚀"#print(r.name + "^")
return s
def getNum(self):
return len(self.getTreestr().strip().split())
def getTreeProb(self, r):
ans = [r.possibility]
if len(r.child) == 0:
return ans
#r.child = sorted(r.child, key=lambda x:x.name)
for c in r.child:
ans += self.getTreeProb(c)
return ans
def getTreestr(self):
if self.treestr == "":
self.treestr = self.printTree(self)
return self.treestr
else:
return self.treestr
def printTreeWithVar(self, node, var):
ans = ""
if node.name in var:
ans += var[node.name] + " "
else:
ans += node.namer + " "
for x in node.child:
ans += self.printTreeWithVar(x, var)
ans += '^ '
return ans
def printTreeWithType(self, node):
ans = ""
ans += node.name + '🚀' + node.type + " "
for x in node.child:
ans += self.printTreeWithType(x)
ans += '^ '
return ans
def printprob(self):
ans = self.name + str(self.possibility) + ' '
for x in self.child:
ans += x.printprob()
ans += '^ '
return ans
def __eq__(self, other):
if not isinstance(other, self.__class__):
return False
if self.name.lower() != other.name.lower():
return False
if len(self.child) != len(other.child):
return False
if True:#self.name == 'arguments' and (self.father.name == 'Or' or self.father.name == "And") :
return self.getTreestr().strip() == other.getTreestr().strip() #and self.block == other.block
class SearchNode:
def __init__(self, ds):
self.state = [ds.ruledict["start -> Lambda"]]
self.prob = 0
self.aprob = 0
self.bprob = 0
self.root = Node("Lambda", 2)
self.inputparent = ["start"]
self.parent = np.zeros([args.NlLen + args.CodeLen, args.NlLen + args.CodeLen])
#self.parent[args.NlLen]
self.expanded = None
self.ruledict = ds.rrdict
self.expandedname = []
self.depth = [1]
for x in ds.ruledict:
self.expandedname.append(x.strip().split()[0])
self.everTreepath = []
def selcetNode(self, root):
if not root.expanded and root.name in self.expandedname and root.name != "arguments" and self.state[root.fatherlistID] < len(self.ruledict):
return root
else:
for x in root.child:
ans = self.selcetNode(x)
if ans:
return ans
if root.name == "arguments" and root.expanded == False:
return root
return None
def selectExpandedNode(self):
self.expanded = self.selcetNode(self.root)
def getRuleEmbedding(self, ds, nl):
inputruleparent = []
inputrulechild = []
for x in self.state:
if x >= len(ds.rrdict):
inputruleparent.append(ds.Get_Em(["value"], ds.Code_Voc)[0])
inputrulechild.append(ds.pad_seq(ds.Get_Em(["copyword"], ds.Code_Voc), ds.Char_Len))
else:
rule = ds.rrdict[x].strip().lower().split()
inputruleparent.append(ds.Get_Em([rule[0]], ds.Code_Voc)[0])
inputrulechild.append(ds.pad_seq(ds.Get_Em(rule[2:], ds.Code_Voc), ds.Char_Len))
inputrule = ds.pad_seq(self.state, ds.Code_Len)
inputrulechild = ds.pad_list(inputrulechild, ds.Code_Len, ds.Char_Len)
inputruleparent = ds.pad_seq(ds.Get_Em(self.inputparent, ds.Code_Voc), ds.Code_Len)
inputdepth = ds.pad_seq(self.depth, ds.Code_Len)
return inputrule, inputrulechild, inputruleparent, inputdepth
def getTreePath(self, ds):
tmppath = [self.expanded.name.lower()]
node = self.expanded.father
while node:
tmppath.append(node.name.lower())
node = node.father
tmp = ds.pad_seq(ds.Get_Em(tmppath, ds.Code_Voc), 10)
self.everTreepath.append(tmp)
return ds.pad_list(self.everTreepath, ds.Code_Len, 10)
def applyrule(self, rule, nl):
if rule >= len(self.ruledict):
if rule - len(self.ruledict) >= len(nl):
return False
if self.expanded.depth + 1 >= 40:
nnode = Node(nl[rule - len(self.ruledict)], 39)
else:
nnode = Node(nl[rule - len(self.ruledict)], self.expanded.depth + 1)
self.expanded.child.append(nnode)
nnode.father = self.expanded
nnode.fatherlistID = len(self.state)
else:
rules = self.ruledict[rule]
#print(rules)
if rules.strip().split()[0] != self.expanded.name:
return False
#assert(rules.strip().split()[0] == self.expanded.name)
if rules == self.expanded.name + " -> End ":
self.expanded.expanded = True
else:
for x in rules.strip().split()[2:]:
if self.expanded.depth + 1 >= 40:
nnode = Node(x, 39)
else:
nnode = Node(x, self.expanded.depth + 1)
#nnode = Node(x, self.expanded.depth + 1)
self.expanded.child.append(nnode)
nnode.father = self.expanded
nnode.fatherlistID = len(self.state)
#self.parent.append(self.expanded.fatherlistID)
self.parent[args.NlLen + len(self.depth), args.NlLen + self.expanded.fatherlistID] = 1
if rule >= len(self.ruledict):
self.parent[args.NlLen + len(self.depth), rule - len(self.ruledict)] = 1
self.state.append(rule)
self.inputparent.append(self.expanded.name.lower())
self.depth.append(self.expanded.depth)
if self.expanded.name != "arguments":
self.expanded.expanded = True
return True
def printTree(self, r):
s = r.name + " "#print(r.name)
if len(r.child) == 0:
s += "^ "
return s
#r.child = sorted(r.child, key=lambda x:x.name)
for c in r.child:
s += self.printTree(c)
s += "^ "#print(r.name + "^")
return s
def getTreestr(self):
return self.printTree(self.root)
beamss = []
def BeamSearch(inputnl, vds, model, beamsize, batch_size, k):
args.batch_size = len(inputnl[0])
with torch.no_grad():
beams = {}
for i in range(batch_size):
beams[i] = [SearchNode(vds)]
index = 0
antimask = gVar(getAntiMask(args.CodeLen))
endnum = {}
continueSet = {}
while True:
print(index)
tmpbeam = {}
ansV = {}
if len(endnum) == args.batch_size:
#print(beams[0][0].state)
#print(beams[0][0].inputparent)
break
if index >= args.CodeLen:
break
for p in range(beamsize):
tmprule = []
tmprulechild = []
tmpruleparent = []
tmptreepath = []
tmpAd = []
validnum = []
tmpdepth = []
for i in range(args.batch_size):
if p >= len(beams[i]):
continue
x = beams[i][p]
#print(x.getTreestr())
x.selectExpandedNode()
if x.expanded == None or len(x.state) >= args.CodeLen:
ansV.setdefault(i, []).append(x)
else:
#print(x.expanded.name)
validnum.append(i)
a, b, c, d = x.getRuleEmbedding(vds, vds.nl[args.batch_size * k + i])
tmprule.append(a)
tmprulechild.append(b)
tmpruleparent.append(c)
tmptreepath.append(x.getTreePath(vds))
#tmp = np.eye(vds.Code_Len)[x.parent]
#tmp = np.concatenate([tmp, np.zeros([vds.Code_Len, vds.Code_Len])], axis=0)[:vds.Code_Len,:]#self.pad_list(tmp, self.Code_Len, self.Code_Len)
tmpAd.append(x.parent)
tmpdepth.append(d)
#print("--------------------------")
if len(tmprule) == 0:
continue
batch_size = len(tmprule)
antimasks = antimask.unsqueeze(0).repeat(batch_size, 1, 1).unsqueeze(1)
tmprule = np.array(tmprule)
tmprulechild = np.array(tmprulechild)
tmpruleparent = np.array(tmpruleparent)
tmptreepath = np.array(tmptreepath)
tmpAd = np.array(tmpAd)
tmpdepth = np.array(tmpdepth)
'''print(inputnl[3][:index + 1], tmprule[:index + 1])
assert(np.array_equal(inputnl[3][0][:index + 1], tmprule[0][:index + 1]))
assert(np.array_equal(inputnl[4][0][:index + 1], tmpruleparent[0][:index + 1]))
assert(np.array_equal(inputnl[5][0][:index + 1], tmprulechild[0][:index + 1]))
assert(np.array_equal(inputnl[6][0][:index + 1], tmpAd[0][:index + 1]))
assert(np.array_equal(inputnl[7][0][:index + 1], tmptreepath[0][:index + 1]))
assert(np.array_equal(inputnl[8][0][:index + 1], tmpdepth[0][:index + 1]))'''
result = model(gVar(inputnl[0][validnum]), gVar(inputnl[1][validnum]), gVar(tmprule), gVar(tmpruleparent), gVar(tmprulechild), gVar(tmpAd), gVar(tmptreepath), gVar(tmpdepth), antimasks, None, "test")
results = result.data.cpu().numpy()
#print(result, inputCode)
currIndex = 0
for j in range(args.batch_size):
if j not in validnum:
continue
x = beams[j][p]
tmpbeamsize = beamsize
result = np.negative(results[currIndex, index])
currIndex += 1
cresult = np.negative(result)
indexs = np.argsort(result)
for i in range(tmpbeamsize):
if tmpbeamsize >= 30:
break
copynode = deepcopy(x)
#if indexs[i] >= len(vds.rrdict):
#print(cresult[indexs[i]])
c = copynode.applyrule(indexs[i], vds.nl[args.batch_size * k + j])
if not c:
tmpbeamsize += 1
continue
copynode.prob = copynode.prob + np.log(cresult[indexs[i]])
tmpbeam.setdefault(j, []).append(copynode)
#print(tmpbeam[0].prob)
for i in range(args.batch_size):
if i in ansV:
if len(ansV[i]) == beamsize:
endnum[i] = 1
for j in range(args.batch_size):
if j in tmpbeam:
if j in ansV:
for x in ansV[j]:
tmpbeam[j].append(x)
beams[j] = sorted(tmpbeam[j], key=lambda x: x.prob, reverse=True)[:beamsize]
index += 1
for p in range(beamsize):
beam = []
nls = []
for i in range(len(beams)):
#print(beams[i][p].getTreestr())
if p >= len(beams):
beam.append(beams[i][len(beams[i]) - 1])
else:
beam.append(beams[i][p])
nls.append(vds.nl[args.batch_size * k + i])
finetune(beam, k, nls, args.batch_size)
for i in range(len(beams)):
beamss.append(deepcopy(beams[i]))
for i in range(len(beams)):
mans = -1000000
lst = beams[i]
tmpans = 0
for y in lst:
#print(y.getTreestr())
if y.prob > mans:
mans = y.prob
tmpans = y
beams[i] = tmpans
return beams
#return beams
def test():
pre()
dev_set = SumDataset(args, "test")
print(len(dev_set))
args.Nl_Vocsize = len(dev_set.Nl_Voc)
args.Code_Vocsize = len(dev_set.Code_Voc)
args.Vocsize = len(dev_set.Char_Voc)
args.rulenum = len(dev_set.ruledict) + args.NlLen
args.batch_size = 56
rdic = {}
for x in dev_set.Nl_Voc:
rdic[dev_set.Nl_Voc[x]] = x
#print(dev_set.Nl_Voc)
model = Decoder(args)
if torch.cuda.is_available():
print('using GPU')
#os.environ["CUDA_VISIBLE_DEVICES"] = "3"
model = model.cuda()
devloader = torch.utils.data.DataLoader(dataset=dev_set, batch_size=args.batch_size,
shuffle=False, drop_last=False, num_workers=0)
model = model.eval()
load_model(model)
f = open("outval.txt", "w")
index = 0
for x in tqdm(devloader):
ans = BeamSearch((x[0], x[1], x[5], x[2], x[3], x[4], x[6], x[7], x[8]), dev_set, model, 10, args.batch_size, index)
index += 1
for i in range(args.batch_size):
beam = ans[i]
#print(beam[0].parent, beam[0].everTreepath, beam[0].state)
f.write(beam.getTreestr())
f.write("\n")
#exit(0)
#f.write(" ".join(ans.ans[1:-1]))
#f.write("\n")
#f.flush()#print(ans)
open("beams.pkl", "wb").write(pickle.dumps(beamss))
if __name__ == "__main__":
np.random.seed(int(time.time()))
if sys.argv[1] == "train":
train()
else:
test()
#test()