-
Notifications
You must be signed in to change notification settings - Fork 55
/
cmd_args.py
63 lines (47 loc) · 2.17 KB
/
cmd_args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--command', default='train', choices=['train'])
parser.add_argument('--data', default='cifar10', choices=['cifar10'])
parser.add_argument('--num-classes', type=int, default=10)
parser.add_argument('--data-augmentation', type=bool, default=False)
parser.add_argument('--label-corrupt-prob', type=float, default=0.0)
parser.add_argument('--batch-size', type=int, default=128)
parser.add_argument('--epochs', type=int, default=300)
parser.add_argument('--learning-rate', type=float, default=0.1)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--weight-decay', type=float, default=1e-4)
parser.add_argument('--eval-full-trainset', type=bool, default=True,
help='Whether to re-evaluate the full train set on a fixed model, or simply ' +
'report the running average of training statistics')
parser.add_argument('--arch', default='wide-resnet', choices=['wide-resnet', 'mlp'])
parser.add_argument('--wrn-depth', type=int, default=28)
parser.add_argument('--wrn-widen-factor', type=int, default=1)
parser.add_argument('--wrn-droprate', type=float, default=0.0)
parser.add_argument('--mlp-spec', default='512',
help='mlp spec: e.g. 512x128x512 indicates 3 hidden layers')
parser.add_argument('--name', default='', help='Experiment name')
def format_experiment_name(args):
name = args.name
if name != '':
name += '_'
name += args.data + '_'
if args.label_corrupt_prob > 0:
name += 'corrupt%g_' % args.label_corrupt_prob
name += args.arch
if args.arch == 'wide-resnet':
dropmark = '' if args.wrn_droprate == 0 else ('-dr%g' % args.wrn_droprate)
name += '{0}-{1}{2}'.format(args.wrn_depth, args.wrn_widen_factor, dropmark)
elif args.arch == 'mlp':
name += args.mlp_spec
name += '_lr{0}_mmt{1}'.format(args.learning_rate, args.momentum)
if args.weight_decay > 0:
name += '_Wd{0}'.format(args.weight_decay)
else:
name += '_NoWd'
if not args.data_augmentation:
name += '_NoAug'
return name
def parse_args():
args = parser.parse_args()
args.exp_name = format_experiment_name(args)
return args