-
-
Notifications
You must be signed in to change notification settings - Fork 2k
/
projection_utils.rs
276 lines (248 loc) · 8.78 KB
/
projection_utils.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
use polars_utils::format_smartstring;
use polars_utils::iter::EnumerateIdxTrait;
use smartstring::alias::String as SmartString;
use super::*;
pub(super) fn profile_name(
s: &dyn PhysicalExpr,
input_schema: &Schema,
has_cse: bool,
) -> PolarsResult<SmartString> {
match (has_cse, s.to_field(input_schema)) {
(false, Err(e)) => Err(e),
(true, Err(_)) => Ok(expr_to_leaf_column_names_iter(s.as_expression().unwrap())
.map(|n| n.as_ref().into())
.next()
.unwrap()),
(_, Ok(fld)) => Ok(fld.name),
}
}
type IdAndExpression = (u32, Arc<dyn PhysicalExpr>);
fn execute_projection_cached_window_fns(
df: &DataFrame,
exprs: &[Arc<dyn PhysicalExpr>],
state: &ExecutionState,
) -> PolarsResult<Vec<Series>> {
// We partition by normal expression and window expression
// - the normal expressions can run in parallel
// - the window expression take more memory and often use the same group_by keys and join tuples
// so they are cached and run sequential
// the partitioning messes with column order, so we also store the idx
// and use those to restore the original projection order
#[allow(clippy::type_complexity)]
// String: partition_name,
// u32: index,
let mut windows: PlHashMap<SmartString, Vec<IdAndExpression>> = PlHashMap::default();
#[cfg(feature = "dynamic_group_by")]
let mut rolling: PlHashMap<&RollingGroupOptions, Vec<IdAndExpression>> = PlHashMap::default();
let mut other = Vec::with_capacity(exprs.len());
// first we partition the window function by the values they group over.
// the group_by values should be cached
exprs.iter().enumerate_u32().for_each(|(index, phys)| {
let e = phys.as_expression().unwrap();
let mut is_window = false;
for e in e.into_iter() {
if let Expr::Window {
partition_by,
options,
..
} = e
{
let entry = match options {
WindowType::Over(_) => {
let group_by = format_smartstring!("{:?}", partition_by.as_slice());
windows.entry(group_by).or_insert_with(Vec::new)
},
#[cfg(feature = "dynamic_group_by")]
WindowType::Rolling(options) => rolling.entry(options).or_insert_with(Vec::new),
};
entry.push((index, phys.clone()));
is_window = true;
break;
}
}
if !is_window {
other.push((index, phys.as_ref()))
}
});
let mut selected_columns = POOL.install(|| {
other
.par_iter()
.map(|(idx, expr)| expr.evaluate(df, state).map(|s| (*idx, s)))
.collect::<PolarsResult<Vec<_>>>()
})?;
// Run partitioned rolling expressions.
// Per partition we run in parallel. We compute the groups before and store them once per partition.
// The rolling expression knows how to fetch the groups.
#[cfg(feature = "dynamic_group_by")]
for (options, partition) in rolling {
// clear the cache for every partitioned group
let state = state.split();
let (_time_key, _keys, groups) = df.group_by_rolling(vec![], options)?;
// Set the groups so all expressions in partition can use it.
// Create a separate scope, so the lock is dropped, otherwise we deadlock when the
// rolling expression try to get read access.
{
let mut groups_map = state.group_tuples.write().unwrap();
groups_map.insert(options.index_column.to_string(), groups);
}
let results = POOL.install(|| {
partition
.par_iter()
.map(|(idx, expr)| expr.evaluate(df, &state).map(|s| (*idx, s)))
.collect::<PolarsResult<Vec<_>>>()
})?;
selected_columns.extend_from_slice(&results);
}
for partition in windows {
// clear the cache for every partitioned group
let mut state = state.split();
// inform the expression it has window functions.
state.insert_has_window_function_flag();
// don't bother caching if we only have a single window function in this partition
if partition.1.len() == 1 {
state.remove_cache_window_flag();
} else {
state.insert_cache_window_flag();
}
for (index, e) in partition.1 {
if e.as_expression()
.unwrap()
.into_iter()
.filter(|e| matches!(e, Expr::Window { .. }))
.count()
== 1
{
state.insert_cache_window_flag();
}
// caching more than one window expression is a complicated topic for another day
// see issue #2523
else {
state.remove_cache_window_flag();
}
let s = e.evaluate(df, &state)?;
selected_columns.push((index, s));
}
}
selected_columns.sort_unstable_by_key(|tpl| tpl.0);
let selected_columns = selected_columns.into_iter().map(|tpl| tpl.1).collect();
Ok(selected_columns)
}
fn run_exprs_par(
df: &DataFrame,
exprs: &[Arc<dyn PhysicalExpr>],
state: &ExecutionState,
) -> PolarsResult<Vec<Series>> {
POOL.install(|| {
exprs
.par_iter()
.map(|expr| expr.evaluate(df, state))
.collect()
})
}
fn run_exprs_seq(
df: &DataFrame,
exprs: &[Arc<dyn PhysicalExpr>],
state: &ExecutionState,
) -> PolarsResult<Vec<Series>> {
exprs.iter().map(|expr| expr.evaluate(df, state)).collect()
}
pub(super) fn evaluate_physical_expressions(
df: &mut DataFrame,
cse_exprs: &[Arc<dyn PhysicalExpr>],
exprs: &[Arc<dyn PhysicalExpr>],
state: &ExecutionState,
has_windows: bool,
run_parallel: bool,
) -> PolarsResult<Vec<Series>> {
let expr_runner = if has_windows {
execute_projection_cached_window_fns
} else if run_parallel && exprs.len() > 1 {
run_exprs_par
} else {
run_exprs_seq
};
let cse_expr_runner = if has_windows {
execute_projection_cached_window_fns
} else if run_parallel && cse_exprs.len() > 1 {
run_exprs_par
} else {
run_exprs_seq
};
let selected_columns = if !cse_exprs.is_empty() {
let tmp_cols = cse_expr_runner(df, cse_exprs, state)?;
if has_windows {
state.clear_window_expr_cache();
}
let width = df.width();
// put the cse expressions at the end
unsafe {
df.hstack_mut_unchecked(&tmp_cols);
}
let result = expr_runner(df, exprs, state)?;
// restore original df
unsafe {
df.get_columns_mut().truncate(width);
}
result
} else {
expr_runner(df, exprs, state)?
};
if has_windows {
state.clear_window_expr_cache();
}
Ok(selected_columns)
}
pub(super) fn check_expand_literals(
mut selected_columns: Vec<Series>,
zero_length: bool,
) -> PolarsResult<DataFrame> {
let Some(first_len) = selected_columns.get(0).map(|s| s.len()) else {
return Ok(DataFrame::empty());
};
let mut df_height = 0;
let mut all_equal_len = true;
{
let mut names = PlHashSet::with_capacity(selected_columns.len());
for s in &selected_columns {
let len = s.len();
df_height = std::cmp::max(df_height, len);
if len != first_len {
all_equal_len = false;
}
let name = s.name();
polars_ensure!(names.insert(name), duplicate = name);
}
}
// If all series are the same length it is ok. If not we can broadcast Series of length one.
if !all_equal_len {
selected_columns = selected_columns
.into_iter()
.map(|series| {
Ok(if series.len() == 1 && df_height > 1 {
series.new_from_index(0, df_height)
} else if series.len() == df_height || series.len() == 0 {
series
} else {
polars_bail!(
ComputeError: "series length {} doesn't match the dataframe height of {}",
series.len(), df_height
);
})
})
.collect::<PolarsResult<_>>()?
}
let df = DataFrame::new_no_checks(selected_columns);
// a literal could be projected to a zero length dataframe.
// This prevents a panic.
let df = if zero_length {
let min = df.get_columns().iter().map(|s| s.len()).min();
if min.is_some() {
df.head(min)
} else {
df
}
} else {
df
};
Ok(df)
}