Skip to content

Latest commit

 

History

History
175 lines (151 loc) · 7.48 KB

README.md

File metadata and controls

175 lines (151 loc) · 7.48 KB

Self-Tuning Networks (STNs)

This repository contains a clean-up code for Self-Tuning Networks (STNs) and Delta Self-Tuning Networks (d-STNs). The original repository for Self-Tuning Networks can be found here.

Papers:

Requirements

The code was implemented & tested in Python 3.6. All required modules are listed in requirements.txt and can be installed with the following command:

pip install -r requirements.txt

In addition, please install PyTorch version 1.5.1 (or >= 1.5.0). We plan to release the JAX version of the code as well.

How to use STNs for Custom Projects?

Self-Tuning Networks can be easily applied to any architectures, datasets, and regularization hyperparameters. Please follow these steps to use STNs for your custom projects.

  1. Define your model inheriting from StnModel using layers from \layers. Specify how your models interact with hyperparameters.
class StnTwoLayerMLP(StnModel):
    # Inherit from StnModel.
    def __init__(self, input_dim, output_dim, num_hyper, h_container, use_bias=True):
        super(StnTwoLayerMLP, self).__init__()
        self.input_dim = input_dim
        self.layer_structure = [input_dim, 1200, 1200, output_dim]
        self.num_hyper = num_hyper
        # h_container (HyperContainer) contains all information about hyperparameters.
        self.h_container = h_container
        self.use_bias = use_bias

        # Use StnLinear instead of nn.Linear.
        self.layers = nn.ModuleList(
            [StnLinear(self.layer_structure[i], self.layer_structure[i + 1],
                       num_hyper=num_hyper, bias=use_bias)
             for i in range(len(self.layer_structure) - 1)]
        )
    
    # This method must be defined; it should return a list containing all layers.
    def get_layers(self):
        return self.layers

    def forward(self, x, h_net, h_tensor):
        # Forward method requires h_net and h_tensor.
        # For STNs, h_net and h_tensor are the same. 
        # However, for Delta-STNs, they differ as h_net requires centering.
        x = x.view(-1, self.input_dim)
        
        # Apply dropout for each batch using parameters from h_tensor (perturbed dropout).
        if "dropout0" in self.h_container.h_dict:
            x = dropout(x, self.h_container.transform_perturbed_hyper(h_tensor, "dropout0"), self.training)

        # STN layers requires one additional input h_net.
        x = self.layers[0](x, h_net)
        x = F.relu(x)
        if "dropout1" in self.h_container.h_dict:
            x = dropout(x, self.h_container.transform_perturbed_hyper(h_tensor, "dropout1"), self.training)

        x = self.layers[1](x, h_net)
        x = F.relu(x)
        if "dropout2" in self.h_container.h_dict:
            x = dropout(x, self.h_container.transform_perturbed_hyper(h_tensor, "dropout2"), self.training)

        x = self.layers[2](x, h_net)
        return x
  1. To tune data augmentation parameters, define your dataset class. See more examples in /data. If you wish not to tune data augmentation parameters, you can define a class with these methods:
class StnMNIST(datasets.MNIST):
    def __init__(self, *args, **kwargs):
        super(StnMNIST, self).__init__(*args, **kwargs)

    def set_h_container(self, h_container, perturbed_h_tensor):
        pass

    def reset_hyper_params(self):
        pass
  1. In your training script, initialize a class HyperContainer from /hyper and register all hyperparameters using a method .register.
h_container = HyperContainer(device)

h_container.register("dropout1",
                     info["initial_dropout_value"],
                     info["initial_dropout_scale"],
                     min_range=0., max_range=0.95,
                     discrete=False, same_perturb_mb=False)

h_container.register("dropout2",
                     info["initial_dropout_value"],
                     info["initial_dropout_scale"],
                     min_range=0., max_range=0.95,
                     discrete=False, same_perturb_mb=False)
  1. Choose your desired optimizers and initialize StnStepOptimizer (for STNs) or DeltaStnStepOptimizer (for Delta-STNs).
model_optimizer = torch.optim.SGD(model.parameters(), lr=args.train_lr, momentum=0.9)
hyper_optimizer = torch.optim.RMSprop([h_container.h_tensor], lr=args.valid_lr)
scale_optimizer = torch.optim.RMSprop([h_container.h_scale], lr=args.scale_lr)

stn_step_optimizer = StnStepOptimizer(model, model_optimizer, hyper_optimizer, scale_optimizer, criterion,
                                      h_container, info["tune_scales"], info["entropy_weight"])
  1. Initialize a trainer with your desired configurations and train the model.
stn_trainer = StnTrainer(stn_step_optimizer, train_loader=train_loader, valid_loader=valid_loader,
                         test_loader=test_loader, h_container=h_container, evaluate_fnc=evaluate_fnc,
                         device=device, lr_scheduler=None, logger=logger, warmup_epochs=info["warmup_epochs"],
                         total_epochs=info["total_epochs"], train_steps=5, valid_steps=1,
                         log_interval=10, patience=None)
stn_trainer.train()

Examples

The repository contains examples to reproduce results from the Delta-STN paper.

  1. Multilayer Perceptron experiment on MNIST:
  • STN
python examples/mlp/train.py --entropy_weight 1e-3 --tune_scales --experiment_name mlp_ts_ew1e-3
  • Delta-STN
python examples/mlp/train.py --delta_stn --linearize --entropy_weight 1e-3 --tune_scales --experiment_name mlp_ts_lin_ew1e-3
  1. Simple CNN experiment on FashionMNIST:
  • STN
python examples/simple_cnn/train.py --entropy_weight 1e-3 --tune_scales --experiment_name cnn_ts_ew1e-3
  • Delta-STN
python examples/simple_cnn/train.py --delta_stn --linearize --entropy_weight 1e-3 --tune_scales --experiment_name cnn_ts_lin_ew1e-3
  1. VGG16 experiment on CIFAR10:
  • STN
python examples/vgg/train.py --entropy_weight 1e-3 --tune_scales --experiment_name vgg_ts_ew1e-3
  • Delta-STN
python examples/vgg/train.py --delta_stn --linearize --entropy_weight 1e-4 --tune_scales --experiment_name vgg_ts_lin_ew1e-4

Visualization

The repository supports wandb visualization. You can either visualize your training online using wandb or use TensorBoard visualization with the following command:

tensorboard --logdir=examples/mlp/runs/

Citation

To cite this work, please use:

@article{bae2020delta,
  title={Delta-STN: Efficient Bilevel Optimization for Neural Networks using Structured Response Jacobians},
  author={Bae, Juhan and Grosse, Roger B},
  journal={Advances in Neural Information Processing Systems},
  volume={33},
  year={2020}
}
@article{mackay2019self,
  title={Self-tuning networks: Bilevel optimization of hyperparameters using structured best-response functions},
  author={MacKay, Matthew and Vicol, Paul and Lorraine, Jon and Duvenaud, David and Grosse, Roger},
  journal={arXiv preprint arXiv:1903.03088},
  year={2019}
}

Contributors

If you have any questions or suggestions, please feel free to contact me via jbae at cs dot toronto dot edu.