-
Notifications
You must be signed in to change notification settings - Fork 152
/
keras_model.cc
456 lines (394 loc) · 13.6 KB
/
keras_model.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
#include "keras_model.h"
#include <iostream>
#include <fstream>
#include <algorithm>
#include <math.h>
using namespace std;
std::vector<float> keras::read_1d_array(std::ifstream &fin, int cols) {
vector<float> arr;
float tmp_float;
char tmp_char;
fin >> tmp_char; // for '['
for(int n = 0; n < cols; ++n) {
fin >> tmp_float;
arr.push_back(tmp_float);
}
fin >> tmp_char; // for ']'
return arr;
}
void keras::DataChunk2D::read_from_file(const std::string &fname) {
ifstream fin(fname.c_str());
fin >> m_depth >> m_rows >> m_cols;
for(int d = 0; d < m_depth; ++d) {
vector<vector<float> > tmp_single_depth;
for(int r = 0; r < m_rows; ++r) {
vector<float> tmp_row = keras::read_1d_array(fin, m_cols);
tmp_single_depth.push_back(tmp_row);
}
data.push_back(tmp_single_depth);
}
fin.close();
}
void keras::LayerConv2D::load_weights(std::ifstream &fin) {
char tmp_char = ' ';
string tmp_str = "";
float tmp_float;
bool skip = false;
fin >> m_kernels_cnt >> m_depth >> m_rows >> m_cols >> m_border_mode;
if (m_border_mode == "[") { m_border_mode = "valid"; skip = true; }
//cout << "LayerConv2D " << m_kernels_cnt << "x" << m_depth << "x" << m_rows <<
// "x" << m_cols << " border_mode " << m_border_mode << endl;
// reading kernel weights
for(int k = 0; k < m_kernels_cnt; ++k) {
vector<vector<vector<float> > > tmp_depths;
for(int d = 0; d < m_depth; ++d) {
vector<vector<float> > tmp_single_depth;
for(int r = 0; r < m_rows; ++r) {
if (!skip) { fin >> tmp_char; } // for '['
else { skip = false; }
vector<float> tmp_row;
for(int c = 0; c < m_cols; ++c) {
fin >> tmp_float;
tmp_row.push_back(tmp_float);
}
fin >> tmp_char; // for ']'
tmp_single_depth.push_back(tmp_row);
}
tmp_depths.push_back(tmp_single_depth);
}
m_kernels.push_back(tmp_depths);
}
// reading kernel biases
fin >> tmp_char; // for '['
for(int k = 0; k < m_kernels_cnt; ++k) {
fin >> tmp_float;
m_bias.push_back(tmp_float);
}
fin >> tmp_char; // for ']'
}
void keras::LayerActivation::load_weights(std::ifstream &fin) {
fin >> m_activation_type;
//cout << "Activation type " << m_activation_type << endl;
}
void keras::LayerMaxPooling::load_weights(std::ifstream &fin) {
fin >> m_pool_x >> m_pool_y;
//cout << "MaxPooling " << m_pool_x << "x" << m_pool_y << endl;
}
void keras::LayerDense::load_weights(std::ifstream &fin) {
fin >> m_input_cnt >> m_neurons;
float tmp_float;
char tmp_char = ' ';
for(int i = 0; i < m_input_cnt; ++i) {
vector<float> tmp_n;
fin >> tmp_char; // for '['
for(int n = 0; n < m_neurons; ++n) {
fin >> tmp_float;
tmp_n.push_back(tmp_float);
}
fin >> tmp_char; // for ']'
m_weights.push_back(tmp_n);
}
//cout << "weights " << m_weights.size() << endl;
fin >> tmp_char; // for '['
for(int n = 0; n < m_neurons; ++n) {
fin >> tmp_float;
m_bias.push_back(tmp_float);
}
fin >> tmp_char; // for ']'
//cout << "bias " << m_bias.size() << endl;
}
keras::KerasModel::KerasModel(const string &input_fname, bool verbose)
: m_verbose(verbose) {
load_weights(input_fname);
}
keras::DataChunk* keras::LayerFlatten::compute_output(keras::DataChunk* dc) {
vector<vector<vector<float> > > im = dc->get_3d();
size_t csize = im[0].size();
size_t rsize = im[0][0].size();
size_t size = im.size() * csize * rsize;
keras::DataChunkFlat *out = new DataChunkFlat(size);
float * y_ret = out->get_1d_rw().data();
for(size_t i = 0, dst = 0; i < im.size(); ++i) {
for(size_t j = 0; j < csize; ++j) {
float * row = im[i][j].data();
for(size_t k = 0; k < rsize; ++k) {
y_ret[dst++] = row[k];
}
}
}
return out;
}
keras::DataChunk* keras::LayerMaxPooling::compute_output(keras::DataChunk* dc) {
vector<vector<vector<float> > > im = dc->get_3d();
vector<vector<vector<float> > > y_ret;
for(unsigned int i = 0; i < im.size(); ++i) {
vector<vector<float> > tmp_y;
for(unsigned int j = 0; j < (unsigned int)(im[0].size()/m_pool_x); ++j) {
tmp_y.push_back(vector<float>((int)(im[0][0].size()/m_pool_y), 0.0));
}
y_ret.push_back(tmp_y);
}
for(unsigned int d = 0; d < y_ret.size(); ++d) {
for(unsigned int x = 0; x < y_ret[0].size(); ++x) {
unsigned int start_x = x*m_pool_x;
unsigned int end_x = start_x + m_pool_x;
for(unsigned int y = 0; y < y_ret[0][0].size(); ++y) {
unsigned int start_y = y*m_pool_y;
unsigned int end_y = start_y + m_pool_y;
vector<float> values;
for(unsigned int i = start_x; i < end_x; ++i) {
for(unsigned int j = start_y; j < end_y; ++j) {
values.push_back(im[d][i][j]);
}
}
y_ret[d][x][y] = *max_element(values.begin(), values.end());
}
}
}
keras::DataChunk *out = new keras::DataChunk2D();
out->set_data(y_ret);
return out;
}
void keras::missing_activation_impl(const string &act) {
cout << "Activation " << act << " not defined!" << endl;
cout << "Please add its implementation before use." << endl;
exit(1);
}
keras::DataChunk* keras::LayerActivation::compute_output(keras::DataChunk* dc) {
if (dc->get_data_dim() == 3) {
vector<vector<vector<float> > > y = dc->get_3d();
if(m_activation_type == "relu") {
for(unsigned int i = 0; i < y.size(); ++i) {
for(unsigned int j = 0; j < y[0].size(); ++j) {
for(unsigned int k = 0; k < y[0][0].size(); ++k) {
if(y[i][j][k] < 0) y[i][j][k] = 0;
}
}
}
keras::DataChunk *out = new keras::DataChunk2D();
out->set_data(y);
return out;
} else {
keras::missing_activation_impl(m_activation_type);
}
} else if (dc->get_data_dim() == 1) { // flat data, use 1D
vector<float> y = dc->get_1d();
if(m_activation_type == "relu") {
for(unsigned int k = 0; k < y.size(); ++k) {
if(y[k] < 0) y[k] = 0;
}
} else if(m_activation_type == "softmax") {
float sum = 0.0;
for(unsigned int k = 0; k < y.size(); ++k) {
y[k] = exp(y[k]);
sum += y[k];
}
for(unsigned int k = 0; k < y.size(); ++k) {
y[k] /= sum;
}
} else if(m_activation_type == "sigmoid") {
for(unsigned int k = 0; k < y.size(); ++k) {
y[k] = 1/(1+exp(-y[k]));
}
} else if(m_activation_type == "tanh") {
for(unsigned int k = 0; k < y.size(); ++k) {
y[k] = tanh(y[k]);
}
} else {
keras::missing_activation_impl(m_activation_type);
}
keras::DataChunk *out = new DataChunkFlat();
out->set_data(y);
return out;
} else { throw "data dim not supported"; }
return dc;
}
// with border mode = valid
std::vector< std::vector<float> > keras::conv_single_depth_valid(
std::vector< std::vector<float> > const & im,
std::vector< std::vector<float> > const & k)
{
size_t k1_size = k.size(), k2_size = k[0].size();
unsigned int st_x = (k1_size - 1) >> 1;
unsigned int st_y = (k2_size - 1) >> 1;
std::vector< std::vector<float> > y(im.size() - 2*st_x, vector<float>(im[0].size() - 2*st_y, 0));
for(unsigned int i = st_x; i < im.size()-st_x; ++i) {
for(unsigned int j = st_y; j < im[0].size()-st_y; ++j) {
float sum = 0;
for(unsigned int k1 = 0; k1 < k.size(); ++k1) {
//const float * k_data = k[k1_size-k1-1].data();
//const float * im_data = im[i-st_x+k1].data();
for(unsigned int k2 = 0; k2 < k[0].size(); ++k2) {
sum += k[k1_size-k1-1][k2_size-k2-1] * im[i-st_x+k1][j-st_y+k2];
}
}
y[i-st_x][j-st_y] = sum;
}
}
return y;
}
// with border mode = same
std::vector< std::vector<float> > keras::conv_single_depth_same(
std::vector< std::vector<float> > const & im,
std::vector< std::vector<float> > const & k)
{
size_t k1_size = k.size(), k2_size = k[0].size();
unsigned int st_x = (k1_size - 1) >> 1;
unsigned int st_y = (k2_size - 1) >> 1;
size_t max_imc = im.size() - 1;
size_t max_imr = im[0].size() - 1;
std::vector< std::vector<float> > y(im.size(), vector<float>(im[0].size(), 0));
for(unsigned int i = 0; i < im.size(); ++i) {
for(unsigned int j = 0; j < im[0].size(); ++j) {
float sum = 0;
for(unsigned int k1 = 0; k1 < k.size(); ++k1) {
//const float * k_data = k[k1_size-k1-1].data(); // it is not working ...
//const float * im_data = im[i-st_x+k1].data();
for(unsigned int k2 = 0; k2 < k[0].size(); ++k2) {
if(i-st_x+k1 < 0) continue;
if(i-st_x+k1 > max_imc) continue;
if(j-st_y+k2 < 0) continue;
if(j-st_y+k2 > max_imr) continue;
sum += k[k1_size-k1-1][k2_size-k2-1] * im[i-st_x+k1][j-st_y+k2];
}
}
y[i][j] = sum;
}
}
return y;
}
keras::DataChunk* keras::LayerConv2D::compute_output(keras::DataChunk* dc) {
unsigned int st_x = (m_kernels[0][0].size()-1) >> 1;
unsigned int st_y = (m_kernels[0][0][0].size()-1) >> 1;
vector< vector< vector<float> > > y_ret;
auto const & im = dc->get_3d();
size_t size_x = (m_border_mode == "valid")? im[0].size() - 2 * st_x : im[0].size();
size_t size_y = (m_border_mode == "valid")? im[0][0].size() - 2 * st_y: im[0][0].size();
for(unsigned int i = 0; i < m_kernels.size(); ++i) { // depth
vector<vector<float> > tmp;
tmp.reserve(size_x);
for(unsigned int j = 0; j < size_x; ++j) { // rows
tmp.emplace_back(vector<float>(size_y, 0.0));
}
y_ret.push_back(tmp);
}
for(unsigned int j = 0; j < m_kernels.size(); ++j) { // loop over kernels
for(unsigned int m = 0; m < im.size(); ++m) { // loope over image depth
vector<vector<float> > tmp_w = (m_border_mode == "valid")?
keras::conv_single_depth_valid(im[m], m_kernels[j][m]) :
keras::conv_single_depth_same(im[m], m_kernels[j][m]);
for(unsigned int x = 0; x < tmp_w.size(); ++x) {
for(unsigned int y = 0; y < tmp_w[0].size(); ++y) {
y_ret[j][x][y] += tmp_w[x][y];
}
}
}
for(unsigned int x = 0; x < y_ret[0].size(); ++x) {
for(unsigned int y = 0; y < y_ret[0][0].size(); ++y) {
y_ret[j][x][y] += m_bias[j];
}
}
}
keras::DataChunk *out = new keras::DataChunk2D();
out->set_data(y_ret);
return out;
}
keras::DataChunk* keras::LayerDense::compute_output(keras::DataChunk* dc) {
//cout << "weights: input size " << m_weights.size() << endl;
//cout << "weights: neurons size " << m_weights[0].size() << endl;
//cout << "bias " << m_bias.size() << endl;
size_t size = m_weights[0].size();
size_t size8 = size >> 3;
keras::DataChunkFlat *out = new DataChunkFlat(size, 0);
float * y_ret = out->get_1d_rw().data();
auto const & im = dc->get_1d();
for (size_t j = 0; j < m_weights.size(); ++j) { // iter over input
const float * w = m_weights[j].data();
float p = im[j];
size_t k = 0;
for (size_t i = 0; i < size8; ++i) { // iter over neurons
y_ret[k] += w[k] * p; // vectorize if you can
y_ret[k+1] += w[k+1] * p;
y_ret[k+2] += w[k+2] * p;
y_ret[k+3] += w[k+3] * p;
y_ret[k+4] += w[k+4] * p;
y_ret[k+5] += w[k+5] * p;
y_ret[k+6] += w[k+6] * p;
y_ret[k+7] += w[k+7] * p;
k += 8;
}
while (k < size) { y_ret[k] += w[k] * p; ++k; }
}
for (size_t i = 0; i < size; ++i) { // add biases
y_ret[i] += m_bias[i];
}
return out;
}
std::vector<float> keras::KerasModel::compute_output(keras::DataChunk *dc) {
//cout << endl << "KerasModel compute output" << endl;
//cout << "Input data size:" << endl;
dc->show_name();
keras::DataChunk *inp = dc;
keras::DataChunk *out = 0;
for(int l = 0; l < (int)m_layers.size(); ++l) {
//cout << "Processing layer " << m_layers[l]->get_name() << endl;
out = m_layers[l]->compute_output(inp);
//cout << "Input" << endl;
//inp->show_name();
//cout << "Output" << endl;
//out->show_name();
if(inp != dc) delete inp;
//delete inp;
inp = 0L;
inp = out;
}
std::vector<float> flat_out = out->get_1d();
out->show_values();
delete out;
return flat_out;
}
void keras::KerasModel::load_weights(const string &input_fname) {
if(m_verbose) cout << "Reading model from " << input_fname << endl;
ifstream fin(input_fname.c_str());
string layer_type = "";
string tmp_str = "";
int tmp_int = 0;
fin >> tmp_str >> m_layers_cnt;
if(m_verbose) cout << "Layers " << m_layers_cnt << endl;
for(int layer = 0; layer < m_layers_cnt; ++layer) { // iterate over layers
fin >> tmp_str >> tmp_int >> layer_type;
if(m_verbose) cout << "Layer " << tmp_int << " " << layer_type << endl;
Layer *l = 0L;
if(layer_type == "Convolution2D") {
l = new LayerConv2D();
} else if(layer_type == "Activation") {
l = new LayerActivation();
} else if(layer_type == "MaxPooling2D") {
l = new LayerMaxPooling();
} else if(layer_type == "Flatten") {
l = new LayerFlatten();
} else if(layer_type == "Dense") {
l = new LayerDense();
} else if(layer_type == "Dropout") {
continue; // we dont need dropout layer in prediciton mode
}
if(l == 0L) {
cout << "Layer is empty, maybe it is not defined? Cannot define network." << endl;
return;
}
l->load_weights(fin);
m_layers.push_back(l);
}
fin.close();
}
keras::KerasModel::~KerasModel() {
for(int i = 0; i < (int)m_layers.size(); ++i) {
delete m_layers[i];
}
}
int keras::KerasModel::get_output_length() const
{
int i = m_layers.size() - 1;
while ((i > 0) && (m_layers[i]->get_output_units() == 0)) --i;
return m_layers[i]->get_output_units();
}