-
Notifications
You must be signed in to change notification settings - Fork 2
/
gfnff_rab.f90
294 lines (279 loc) · 12.6 KB
/
gfnff_rab.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
!================================================================================!
! This file is part of gfnff.
!
! Copyright (C) 2023 Philipp Pracht
!
! gfnff is free software: you can redistribute it and/or modify it under
! the terms of the GNU Lesser General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! gfnff is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU Lesser General Public License for more details.
!
! You should have received a copy of the GNU Lesser General Public License
! along with gfnff. If not, see <https://www.gnu.org/licenses/>.
!--------------------------------------------------------------------------------!
!> The original (unmodified) source code can be found under the GNU LGPL 3.0 license
!> Copyright (C) 2019-2020 Sebastian Ehlert, Sebastian Spicher, Stefan Grimme
!> at https://github.com/grimme-lab/xtb
!================================================================================!
module gfnff_rab
use iso_fortran_env,only:wp => real64
use gfnff_helpers,only:lin
implicit none
private
public :: gfnffrab,gfnffdrab
!========================================================================================!
!========================================================================================!
contains !> MODULE PROCEDURES START HERE
!========================================================================================!
!========================================================================================!
subroutine gfnffdrab(n,at,xyz,cn,dcn,nsrb,srblist,rab,grab)
implicit none
!> INPUT
integer :: n ! number of atoms
integer :: at(n) ! ordinal numbers
real(wp) :: xyz(3,n) ! Cartesian coords in Bohr
real(wp) :: cn(n) ! D3 CN
real(wp) :: dcn(3,n,n) ! D3 CN derivatives
integer :: nsrb ! # of pairs
integer :: srblist(2,nsrb) ! list of atom pairs
!> OUTPUT
real(wp) :: rab(nsrb) ! output bond lengths estimates, input the predetermined bond shifts
real(wp) :: grab(3,n,nsrb) ! output bond lengths gradients
!> LOCAL
integer :: m,i,j,k,ii,jj,ati,atj,ir,jr
real(wp) :: ra,rb,k1,k2,den,ff
! fitted on PBExa-3c geom set by SG, 9/2018
! H B C N O F SI P S CL GE AS SE BR SN SB TE I together (and for glob par)
! and rest one element at a time, LN taken as av. of La and Hf
! about 15-20 reference molecules per element (about 30-40 data points per fit
! parameter)
! electronegativity (started from Pauling values)
! base radius
! CN dep. lin
! CN dep. quadratic (not used, only slightly better)
!&<
real(wp) :: cnfak(86),r0(86),en(86),p(6,2)
data en / &
& 2.30085633, 2.78445145, 1.52956084, 1.51714704, 2.20568300, &
& 2.49640820, 2.81007174, 4.51078438, 4.67476223, 3.29383610, &
& 2.84505365, 2.20047950, 2.31739628, 2.03636974, 1.97558064, &
& 2.13446570, 2.91638164, 1.54098156, 2.91656301, 2.26312147, &
& 2.25621439, 1.32628677, 2.27050569, 1.86790977, 2.44759456, &
& 2.49480042, 2.91545568, 3.25897750, 2.68723778, 1.86132251, &
& 2.01200832, 1.97030722, 1.95495427, 2.68920990, 2.84503857, &
& 2.61591858, 2.64188286, 2.28442252, 1.33011187, 1.19809388, &
& 1.89181390, 2.40186898, 1.89282464, 3.09963488, 2.50677823, &
& 2.61196704, 2.09943450, 2.66930105, 1.78349472, 2.09634533, &
& 2.00028974, 1.99869908, 2.59072029, 2.54497829, 2.52387890, &
& 2.30204667, 1.60119300, 2.00000000, 2.00000000, 2.00000000, &
& 2.00000000, 2.00000000, 2.00000000, 2.00000000, 2.00000000, &
& 2.00000000, 2.00000000, 2.00000000, 2.00000000, 2.00000000, &
& 2.00000000, 2.30089349, 1.75039077, 1.51785130, 2.62972945, &
& 2.75372921, 2.62540906, 2.55860939, 3.32492356, 2.65140898, &
& 1.52014458, 2.54984804, 1.72021963, 2.69303422, 1.81031095, &
& 2.34224386 &
& /
data r0 / &
& 0.55682207, 0.80966997, 2.49092101, 1.91705642, 1.35974851, &
& 0.98310699, 0.98423007, 0.76716063, 1.06139799, 1.17736822, & ! 10
& 2.85570926, 2.56149012, 2.31673425, 2.03181740, 1.82568535, &
& 1.73685958, 1.97498207, 2.00136196, 3.58772537, 2.68096221, & ! 20
& 2.23355957, 2.33135502, 2.15870365, 2.10522128, 2.16376162, &
& 2.10804037, 1.96460045, 2.00476257, 2.22628712, 2.43846700, & ! 30
& 2.39408483, 2.24245792, 2.05751204, 2.15427677, 2.27191920, &
& 2.19722638, 3.80910350, 3.26020971, 2.99716916, 2.71707818, & ! 40
& 2.34950167, 2.11644818, 2.47180659, 2.32198800, 2.32809515, &
& 2.15244869, 2.55958313, 2.59141300, 2.62030465, 2.39935278, & ! 50
& 2.56912355, 2.54374096, 2.56914830, 2.53680807, 4.24537037, &
& 3.66542289, 3.19903011, 2.80000000, 2.80000000, 2.80000000, & ! 60
& 2.80000000, 2.80000000, 2.80000000, 2.80000000, 2.80000000, &
& 2.80000000, 2.80000000, 2.80000000, 2.80000000, 2.80000000, &
& 2.80000000, 2.34880037, 2.37597108, 2.49067697, 2.14100577, &
& 2.33473532, 2.19498900, 2.12678348, 2.34895048, 2.33422774, &
& 2.86560827, 2.62488837, 2.88376127, 2.75174124, 2.83054552, &
& 2.63264944 &
& /
data cnfak / &
& 0.17957827, 0.25584045,-0.02485871, 0.00374217, 0.05646607, &
& 0.10514203, 0.09753494, 0.30470380, 0.23261783, 0.36752208, &
& 0.00131819,-0.00368122,-0.01364510, 0.04265789, 0.07583916, &
& 0.08973207,-0.00589677, 0.13689929,-0.01861307, 0.11061699, &
& 0.10201137, 0.05426229, 0.06014681, 0.05667719, 0.02992924, &
& 0.03764312, 0.06140790, 0.08563465, 0.03707679, 0.03053526, &
&-0.00843454, 0.01887497, 0.06876354, 0.01370795,-0.01129196, &
& 0.07226529, 0.01005367, 0.01541506, 0.05301365, 0.07066571, &
& 0.07637611, 0.07873977, 0.02997732, 0.04745400, 0.04582912, &
& 0.10557321, 0.02167468, 0.05463616, 0.05370913, 0.05985441, &
& 0.02793994, 0.02922983, 0.02220438, 0.03340460,-0.04110969, &
&-0.01987240, 0.07260201, 0.07700000, 0.07700000, 0.07700000, &
& 0.07700000, 0.07700000, 0.07700000, 0.07700000, 0.07700000, &
& 0.07700000, 0.07700000, 0.07700000, 0.07700000, 0.07700000, &
& 0.07700000, 0.08379100, 0.07314553, 0.05318438, 0.06799334, &
& 0.04671159, 0.06758819, 0.09488437, 0.07556405, 0.13384502, &
& 0.03203572, 0.04235009, 0.03153769,-0.00152488, 0.02714675, &
& 0.04800662 &
& /
!> global EN polynominal parameters x 10^3
p(1,1)= 29.84522887
p(2,1)= -1.70549806
p(3,1)= 6.54013762
p(4,1)= 6.39169003
p(5,1)= 6.00000000 ! handish downward extrapolated for GFN-FF
p(6,1)= 5.60000000
p(1,2)= -8.87843763
p(2,2)= 2.10878369
p(3,2)= 0.08009374
p(4,2)= -0.85808076
p(5,2)= -1.15000000
p(6,2)= -1.30000000
!&>
do k = 1,nsrb
i = srblist(1,k)
j = srblist(2,k)
ati = at(i)
atj = at(j)
ir = itabrow6(ati)
jr = itabrow6(atj)
!--------
ra = r0(ati)+cnfak(ati)*cn(i)
rb = r0(atj)+cnfak(atj)*cn(j)
den = abs(en(ati)-en(atj))
k1 = 0.005d0*(p(ir,1)+p(jr,1))
k2 = 0.005d0*(p(ir,2)+p(jr,2))
ff = 1.0d0-k1*den-k2*den**2
rab(k) = (ra+rb+rab(k))*ff
do m = 1,n
grab(1:3,m,k) = ff*(cnfak(ati)*dcn(1:3,m,i) &
& +cnfak(atj)*dcn(1:3,m,j))
end do
!--------
end do
end subroutine gfnffdrab
!========================================================================================!
INTEGER FUNCTION iTabRow6(i)
implicit none
INTEGER i
iTabRow6 = 0
If (i .gt. 0.and.i .le. 2) Then
iTabRow6 = 1
Else If (i .gt. 2.and.i .le. 10) Then
iTabRow6 = 2
Else If (i .gt. 10.and.i .le. 18) Then
iTabRow6 = 3
Else If (i .gt. 18.and.i .le. 36) Then
iTabRow6 = 4
Else If (i .gt. 36.and.i .le. 54) Then
iTabRow6 = 5
Else If (i .gt. 54) Then
iTabRow6 = 6
End If
Return
End FUNCTION iTabRow6
!========================================================================================!
subroutine gfnffrab(n,at,cn,rab)
implicit none
integer :: n ! number of atoms
integer :: at(n) ! ordinal numbers
real(wp) :: cn(n) ! D3 CN
real(wp) :: rab(n*(n+1)/2) ! output bond lengths estimates
!> LOCAL
integer :: m,i,j,k,ii,jj,ati,atj,ir,jr
real(wp) :: cnfak(86),r0(86),en(86)
real(wp) :: ra,rb,k1,k2,den,ff,p(6,2)
!&<
data en / &
& 2.30085633, 2.78445145, 1.52956084, 1.51714704, 2.20568300, &
& 2.49640820, 2.81007174, 4.51078438, 4.67476223, 3.29383610, &
& 2.84505365, 2.20047950, 2.31739628, 2.03636974, 1.97558064, &
& 2.13446570, 2.91638164, 1.54098156, 2.91656301, 2.26312147, &
& 2.25621439, 1.32628677, 2.27050569, 1.86790977, 2.44759456, &
& 2.49480042, 2.91545568, 3.25897750, 2.68723778, 1.86132251, &
& 2.01200832, 1.97030722, 1.95495427, 2.68920990, 2.84503857, &
& 2.61591858, 2.64188286, 2.28442252, 1.33011187, 1.19809388, &
& 1.89181390, 2.40186898, 1.89282464, 3.09963488, 2.50677823, &
& 2.61196704, 2.09943450, 2.66930105, 1.78349472, 2.09634533, &
& 2.00028974, 1.99869908, 2.59072029, 2.54497829, 2.52387890, &
& 2.30204667, 1.60119300, 2.00000000, 2.00000000, 2.00000000, &
& 2.00000000, 2.00000000, 2.00000000, 2.00000000, 2.00000000, &
& 2.00000000, 2.00000000, 2.00000000, 2.00000000, 2.00000000, &
& 2.00000000, 2.30089349, 1.75039077, 1.51785130, 2.62972945, &
& 2.75372921, 2.62540906, 2.55860939, 3.32492356, 2.65140898, &
& 1.52014458, 2.54984804, 1.72021963, 2.69303422, 1.81031095, &
& 2.34224386 &
& /
data r0 / &
& 0.55682207, 0.80966997, 2.49092101, 1.91705642, 1.35974851, &
& 0.98310699, 0.98423007, 0.76716063, 1.06139799, 1.17736822, &
& 2.85570926, 2.56149012, 2.31673425, 2.03181740, 1.82568535, &
& 1.73685958, 1.97498207, 2.00136196, 3.58772537, 2.68096221, &
& 2.23355957, 2.33135502, 2.15870365, 2.10522128, 2.16376162, &
& 2.10804037, 1.96460045, 2.00476257, 2.22628712, 2.43846700, &
& 2.39408483, 2.24245792, 2.05751204, 2.15427677, 2.27191920, &
& 2.19722638, 3.80910350, 3.26020971, 2.99716916, 2.71707818, &
& 2.34950167, 2.11644818, 2.47180659, 2.32198800, 2.32809515, &
& 2.15244869, 2.55958313, 2.59141300, 2.62030465, 2.39935278, &
& 2.56912355, 2.54374096, 2.56914830, 2.53680807, 4.24537037, &
& 3.66542289, 3.19903011, 2.80000000, 2.80000000, 2.80000000, &
& 2.80000000, 2.80000000, 2.80000000, 2.80000000, 2.80000000, &
& 2.80000000, 2.80000000, 2.80000000, 2.80000000, 2.80000000, &
& 2.80000000, 2.34880037, 2.37597108, 2.49067697, 2.14100577, &
& 2.33473532, 2.19498900, 2.12678348, 2.34895048, 2.33422774, &
& 2.86560827, 2.62488837, 2.88376127, 2.75174124, 2.83054552, &
& 2.63264944 &
& /
data cnfak / &
& 0.17957827, 0.25584045,-0.02485871, 0.00374217, 0.05646607, &
& 0.10514203, 0.09753494, 0.30470380, 0.23261783, 0.36752208, &
& 0.00131819,-0.00368122,-0.01364510, 0.04265789, 0.07583916, &
& 0.08973207,-0.00589677, 0.13689929,-0.01861307, 0.11061699, &
& 0.10201137, 0.05426229, 0.06014681, 0.05667719, 0.02992924, &
& 0.03764312, 0.06140790, 0.08563465, 0.03707679, 0.03053526, &
&-0.00843454, 0.01887497, 0.06876354, 0.01370795,-0.01129196, &
& 0.07226529, 0.01005367, 0.01541506, 0.05301365, 0.07066571, &
& 0.07637611, 0.07873977, 0.02997732, 0.04745400, 0.04582912, &
& 0.10557321, 0.02167468, 0.05463616, 0.05370913, 0.05985441, &
& 0.02793994, 0.02922983, 0.02220438, 0.03340460,-0.04110969, &
&-0.01987240, 0.07260201, 0.07700000, 0.07700000, 0.07700000, &
& 0.07700000, 0.07700000, 0.07700000, 0.07700000, 0.07700000, &
& 0.07700000, 0.07700000, 0.07700000, 0.07700000, 0.07700000, &
& 0.07700000, 0.08379100, 0.07314553, 0.05318438, 0.06799334, &
& 0.04671159, 0.06758819, 0.09488437, 0.07556405, 0.13384502, &
& 0.03203572, 0.04235009, 0.03153769,-0.00152488, 0.02714675, &
& 0.04800662 &
& /
p(1,1)= 29.84522887
p(2,1)= -1.70549806
p(3,1)= 6.54013762
p(4,1)= 6.39169003
p(5,1)= 6.00000000
p(6,1)= 5.60000000
p(1,2)= -8.87843763
p(2,2)= 2.10878369
p(3,2)= 0.08009374
p(4,2)= -0.85808076
p(5,2)= -1.15000000
p(6,2)= -1.30000000
!&>
do i = 1,n
do j = 1,i-1
k = lin(j,i)
ati = at(i)
atj = at(j)
ir = itabrow6(ati)
jr = itabrow6(atj)
ra = r0(ati)+cnfak(ati)*cn(i)
rb = r0(atj)+cnfak(atj)*cn(j)
den = abs(en(ati)-en(atj))
k1 = 0.005d0*(p(ir,1)+p(jr,1))
k2 = 0.005d0*(p(ir,2)+p(jr,2))
ff = 1.0d0-k1*den-k2*den**2
rab(k) = (ra+rb)*ff
end do
end do
end subroutine gfnffrab
end module gfnff_rab