-
Notifications
You must be signed in to change notification settings - Fork 13
/
inference_pgdiff.py
271 lines (230 loc) · 11.5 KB
/
inference_pgdiff.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import argparse
import os
import cv2
import os.path as osp
from collections import OrderedDict
import numpy as np
import torch as th
import torch.distributed as dist
import torch.nn.functional as F
from guided_diffusion import dist_util, logger
from guided_diffusion.script_util import (
SUPPORTED_TASKS,
model_and_diffusion_defaults,
create_model_and_diffusion,
create_restorer,
add_dict_to_argparser,
args_to_dict,
create_arcface_embedding,
avg_grayscale,
adaptive_instance_normalization,
)
def main():
def partial_guidance(x, t, y=None, pred_xstart=None, target=None, ref=None, mask=None, task="restoration", scale=0, N=1, s_start=1, s_end=0.7):
assert y is not None
with th.enable_grad():
pred_xstart_in = pred_xstart.detach().requires_grad_(True)
total_loss = 0
print(f'[t={str(t.cpu().numpy()[0]).zfill(3)}]', end=' ')
# property: lightness & color stats
if task == 'colorization':
mse_loss = F.mse_loss(avg_grayscale(y), avg_grayscale(pred_xstart_in), reduction='sum') * args.lightness_weight # 1
print(f'loss (lightness): {mse_loss};', end=' ')
total_loss = total_loss + mse_loss
pred_xstart_adain = adaptive_instance_normalization(pred_xstart_in, None).clamp(-1,1)
adain_loss = F.mse_loss(pred_xstart_in, pred_xstart_adain, reduction='sum') * args.color_weight # 0.05
print(f'loss (color): {adain_loss};', end=' ')
total_loss = total_loss + adain_loss
# property: unmasked region
if task == 'inpainting':
mse_loss = F.mse_loss(y[mask==0], pred_xstart_in[mask==0], reduction='sum') * args.unmasked_weight # 1
print(f'loss (unmasked): {mse_loss};', end=' ')
total_loss = total_loss + mse_loss
# property: smooth semantics
if 'restoration' in task:
if target == None:
fake_g_output = restorer(x, y_t=y, t=t).clamp(-1,1)
fake_g_output = fake_g_output.detach().requires_grad_(True).cuda()
else:
fake_g_output = target.detach().requires_grad_(True).cuda()
mse_loss = F.mse_loss(fake_g_output, pred_xstart_in, reduction='sum') * args.ss_weight # 1
print(f'loss (smooth semantics): {mse_loss};', end=' ')
total_loss = total_loss + mse_loss
# + property: identity reference
if task == 'ref_restoration':
emd_x0 = embedding(F.interpolate(pred_xstart_in, (112,112), mode='bilinear', antialias=True))
emd_ref = embedding(F.interpolate(ref, (112,112), mode='bilinear', antialias=True))
# Choice 1: MSE loss (default)
ref_loss = F.mse_loss(emd_x0, emd_ref, reduction='sum') * args.ref_weight # 25
# Choice 2: Cosine loss
# cos = th.nn.CosineSimilarity(dim=1, eps=1e-6)
# ref_loss = -cos(emd_x0, emd_ref) * args.ref_weight # 1e4
print(f'loss (identity): {ref_loss};', end=' ')
total_loss = total_loss + ref_loss
# composite tasks
if task == "old_photo_restoration":
total_loss = 0
pred_xstart_in = pred_xstart.detach().requires_grad_(True)
fake_g_output = fake_g_output.detach().requires_grad_(True)
mse_loss = F.mse_loss(avg_grayscale(fake_g_output)[mask==0], avg_grayscale(pred_xstart_in)[mask==0], reduction='sum') * args.op_lightness_weight # 1
print(f'loss (lightness): {mse_loss};', end=' ')
total_loss = total_loss + mse_loss
pred_xstart_adain = adaptive_instance_normalization(pred_xstart_in, None).clamp(-1,1)
adain_loss = F.mse_loss(pred_xstart_in, pred_xstart_adain, reduction='sum') * args.op_color_weight # 0.5
print(f'loss (color): {adain_loss};', end=' ')
total_loss = total_loss + adain_loss
if t.cpu().numpy()[0] > 0:
print(end='\r')
else:
print('\n')
gradient = th.autograd.grad(total_loss, pred_xstart_in)[0]
if args.task == "inpainting" or args.task == "old_photo_restoration":
gradient[mask>0] = 0
if 'restoration' in task:
return gradient, fake_g_output.detach()
else:
return gradient, None
def model_fn(x, t, y=None, target=None, ref=None, mask=None, task=None, scale=0, N=1, s_start=1, s_end=0.7):
assert y is not None
return model(x, t, y if args.class_cond else None)
args = create_argparser().parse_args()
dist_util.setup_dist()
os.makedirs(args.out_dir, exist_ok=True)
out_dir = f'{args.out_dir}/s{args.guidance_scale}-seed{args.seed}'
logger.configure(dir=out_dir)
os.makedirs(out_dir, exist_ok=True)
logger.log("Creating model and diffusion...")
model, diffusion = create_model_and_diffusion(
**args_to_dict(args, model_and_diffusion_defaults().keys())
)
state_dict = dist_util.load_state_dict(args.model_path, map_location="cpu")
new_state_dict = OrderedDict({key[7:]:value for key, value in state_dict.items()})
model.load_state_dict(new_state_dict)
model.to(dist_util.dev())
model.eval()
if 'restoration' in args.task:
logger.log("Loading restorer for smooth semantics prediction...")
restorer = create_restorer()
restorer.load_state_dict(
dist_util.load_state_dict(args.restorer_path, map_location="cpu")['state_dict'], strict=False
)
restorer.to(dist_util.dev())
restorer.eval()
if args.task == 'ref_restoration':
logger.log("Loading embedding for identity feature extraction...")
embedding = create_arcface_embedding()
embedding.load_state_dict(
dist_util.load_state_dict("models/ms1mv3_arcface_r50_fp16.pth")
)
embedding.to(dist_util.dev())
embedding.eval()
assert args.task in SUPPORTED_TASKS, "Task not supported!"
print("=================== Summary (Sampling) ===================")
print(f'Task: {args.task}; Guidance scale: {args.guidance_scale}')
if args.N > 1:
print(f'From {args.s_start}T to {args.s_end}T, {args.N} gradient steps are taken at each time step.')
if args.task == 'colorization':
print(f'Apply partial guidance on lightness (w={args.lightness_weight}).')
print(f'Apply partial guidance on color stats (w={args.color_weight}).')
elif args.task == 'inpainting':
print(f'Apply partial guidance on unmasked regions (w={args.unmasked_weight}).')
elif args.task == 'restoration':
print(f'Apply partial guidance on smooth semantics (w={args.ss_weight}).')
elif args.task == 'ref_restoration':
print(f'Apply partial guidance on smooth semantics (w={args.ss_weight}).')
print(f'Apply partial guidance on identity ref (w={args.ref_weight}).')
elif args.task == 'old_photo_restoration':
print(f'Apply partial guidance on old photo lightness (w={args.op_lightness_weight}).')
print(f'Apply partial guidance on old photo color stats (w={args.op_color_weight}).')
print("==========================================================")
seed = args.seed
th.manual_seed(seed)
np.random.seed(seed)
if th.cuda.is_available():
th.cuda.manual_seed_all(seed)
all_images = []
lr_folder = args.in_dir
lr_images = sorted(os.listdir(lr_folder))
if args.task == 'ref_restoration':
ref_folder = args.ref_dir
assert ref_folder is not None, "Please input reference folder!"
assert len(os.listdir(ref_folder)) == len(os.listdir(lr_folder)), "The number of images in the input folder and reference folder should match!"
if args.task == 'inpainting' or args.task == 'old_photo_restoration':
mask_folder = args.mask_dir
if mask_folder is None:
print(f'No mask is inputted!')
logger.log("Sampling...")
for img_name in lr_images:
model_kwargs = {}
model_kwargs["task"] = args.task
model_kwargs["target"] = None
model_kwargs["scale"] = args.guidance_scale
model_kwargs["N"] = args.N
model_kwargs["s_start"] = int(args.s_start * args.diffusion_steps)
model_kwargs["s_end"] = int(args.s_end * args.diffusion_steps)
y0 = cv2.resize(cv2.imread(osp.join(lr_folder, img_name)), (512,512)).astype(np.float32)[:, :, [2, 1, 0]]/ 127.5 - 1
model_kwargs["y"] = th.tensor(y0).permute(2,0,1).unsqueeze(0).cuda() # (B,C,H,W), [-1,1]
if args.task == 'ref_restoration':
ref_img = cv2.resize(cv2.imread(osp.join(ref_folder, img_name)), (512,512)).astype(np.float32)[:, :, [2, 1, 0]]/ 127.5 - 1
model_kwargs["ref"] = th.tensor(ref_img).permute(2,0,1).unsqueeze(0).cuda() # (B,C,H,W), [-1,1]
elif args.task == 'inpainting' or args.task == 'old_photo_restoration':
try:
mask_img = cv2.resize(cv2.imread(osp.join(mask_folder, img_name)), (512,512)).astype(np.float32)/ 255.
except:
print('Warning: Will treat as if there are no missing pixels!')
mask_img = np.zeros((512, 512, 3)).astype(np.float32)/ 255.
model_kwargs["mask"] = th.tensor(mask_img).permute(2,0,1).unsqueeze(0).cuda() # (B,C,H,W), [0,1]
sample_fn = (
diffusion.p_sample_loop if not args.use_ddim else diffusion.ddim_sample_loop
)
sample = sample_fn(
model_fn,
(args.batch_size, 3, args.image_size, args.image_size),
clip_denoised=args.clip_denoised,
model_kwargs=model_kwargs,
cond_fn=partial_guidance,
device=dist_util.dev(),
seed=seed
)
sample = ((sample + 1) * 127.5).clamp(0, 255).to(th.uint8)
sample = sample.permute(0, 2, 3, 1)
sample = sample.contiguous()
gathered_samples = [th.zeros_like(sample) for _ in range(dist.get_world_size())]
dist.all_gather(gathered_samples, sample)
all_images.extend([sample.cpu().numpy() for sample in gathered_samples])
logger.log(f"created {len(all_images) * args.batch_size} sample")
cv2.imwrite(f'{out_dir}/{img_name}', all_images[-1][0][...,[2,1,0]])
dist.barrier()
logger.log("Sampling complete!")
def create_argparser():
defaults = dict(
seed=1234,
task='restoration',
in_dir='testdata/cropped_faces',
out_dir='results/blind_restoration',
ref_dir=None,
mask_dir=None,
lightness_weight=1.0,
color_weight=0.05,
unmasked_weight=1.0,
ss_weight=1.0,
ref_weight=25.0,
op_lightness_weight=1.0,
op_color_weight=0.5,
N=1, # number of gradient steps at each time t
s_start=1.0, # range for multiple gradient steps (S_{start} = s_start * T)
s_end=0.7, # range for multiple gradient steps (S_{end} = s_end * T)
clip_denoised=True,
num_samples=1,
batch_size=1,
use_ddim=False,
model_path="models/iddpm_ffhq512_ema500000.pth",
restorer_path="models/restorer/rrdb_iter_100000.pth",
guidance_scale=0.1,
)
defaults.update(model_and_diffusion_defaults())
parser = argparse.ArgumentParser()
add_dict_to_argparser(parser, defaults)
return parser
if __name__ == "__main__":
main()