forked from micropython/micropython
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eth.c
847 lines (750 loc) · 26.3 KB
/
eth.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2019 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <string.h>
#include "py/mphal.h"
#include "py/mperrno.h"
#include "shared/netutils/netutils.h"
#include "pin_static_af.h"
#include "extmod/modnetwork.h"
#include "mpu.h"
#include "eth.h"
#if defined(MICROPY_HW_ETH_MDC)
#include "lwip/etharp.h"
#include "lwip/dns.h"
#include "lwip/dhcp.h"
#include "netif/ethernet.h"
// ETH PHY register definitions (for LAN8742)
#undef PHY_BCR
#define PHY_BCR (0x0000)
#define PHY_BCR_SOFT_RESET (0x8000)
#define PHY_BCR_AUTONEG_EN (0x1000)
#define PHY_BCR_POWER_DOWN (0x0800U)
#undef PHY_BSR
#define PHY_BSR (0x0001)
#define PHY_BSR_LINK_STATUS (0x0004)
#define PHY_BSR_AUTONEG_DONE (0x0020)
#define PHY_SCSR (0x001f)
#define PHY_SCSR_SPEED_Pos (2)
#define PHY_SCSR_SPEED_Msk (7 << PHY_SCSR_SPEED_Pos)
#define PHY_SCSR_SPEED_10HALF (1 << PHY_SCSR_SPEED_Pos)
#define PHY_SCSR_SPEED_10FULL (5 << PHY_SCSR_SPEED_Pos)
#define PHY_SCSR_SPEED_100HALF (2 << PHY_SCSR_SPEED_Pos)
#define PHY_SCSR_SPEED_100FULL (6 << PHY_SCSR_SPEED_Pos)
// ETH DMA RX and TX descriptor definitions
#if defined(STM32H7)
#define RX_DESCR_3_OWN_Pos (31)
#define RX_DESCR_3_IOC_Pos (30)
#define RX_DESCR_3_BUF1V_Pos (24)
#define RX_DESCR_3_PL_Msk (0x7fff)
#define TX_DESCR_3_OWN_Pos (31)
#define TX_DESCR_3_LD_Pos (29)
#define TX_DESCR_3_FD_Pos (28)
#define TX_DESCR_3_CIC_Pos (16)
#define TX_DESCR_2_B1L_Pos (0)
#define TX_DESCR_2_B1L_Msk (0x3fff << TX_DESCR_2_B1L_Pos)
#else
#define RX_DESCR_0_OWN_Pos (31)
#define RX_DESCR_0_FL_Pos (16)
#define RX_DESCR_0_FL_Msk (0x3fff << RX_DESCR_0_FL_Pos)
#define RX_DESCR_1_RER_Pos (15)
#define RX_DESCR_1_RCH_Pos (14)
#define RX_DESCR_1_RBS2_Pos (16)
#define RX_DESCR_1_RBS1_Pos (0)
#define TX_DESCR_0_OWN_Pos (31)
#define TX_DESCR_0_LS_Pos (29)
#define TX_DESCR_0_FS_Pos (28)
#define TX_DESCR_0_DP_Pos (26)
#define TX_DESCR_0_CIC_Pos (22)
#define TX_DESCR_0_TER_Pos (21)
#define TX_DESCR_0_TCH_Pos (20)
#define TX_DESCR_1_TBS1_Pos (0)
#endif
// Configuration values
#define PHY_INIT_TIMEOUT_MS (10000)
#define RX_BUF_SIZE (1524) // includes 4-byte CRC at end
#define TX_BUF_SIZE (1524)
#define RX_BUF_NUM (5)
#define TX_BUF_NUM (5)
typedef struct _eth_dma_rx_descr_t {
volatile uint32_t rdes0, rdes1, rdes2, rdes3;
} eth_dma_rx_descr_t;
typedef struct _eth_dma_tx_descr_t {
volatile uint32_t tdes0, tdes1, tdes2, tdes3;
} eth_dma_tx_descr_t;
typedef struct _eth_dma_t {
eth_dma_rx_descr_t rx_descr[RX_BUF_NUM];
eth_dma_tx_descr_t tx_descr[TX_BUF_NUM];
uint8_t rx_buf[RX_BUF_NUM * RX_BUF_SIZE] __attribute__((aligned(4)));
uint8_t tx_buf[TX_BUF_NUM * TX_BUF_SIZE] __attribute__((aligned(4)));
size_t rx_descr_idx;
size_t tx_descr_idx;
uint8_t padding[16384 - 15408];
} eth_dma_t;
typedef struct _eth_t {
uint32_t trace_flags;
struct netif netif;
struct dhcp dhcp_struct;
} eth_t;
static eth_dma_t eth_dma __attribute__((aligned(16384)));
eth_t eth_instance;
STATIC void eth_mac_deinit(eth_t *self);
STATIC void eth_process_frame(eth_t *self, size_t len, const uint8_t *buf);
STATIC void eth_phy_write(uint32_t reg, uint32_t val) {
#if defined(STM32H7)
while (ETH->MACMDIOAR & ETH_MACMDIOAR_MB) {
}
uint32_t ar = ETH->MACMDIOAR;
ar &= ~ETH_MACMDIOAR_RDA_Msk;
ar |= reg << ETH_MACMDIOAR_RDA_Pos;
ar &= ~ETH_MACMDIOAR_MOC_Msk;
ar |= ETH_MACMDIOAR_MOC_WR;
ar |= ETH_MACMDIOAR_MB;
ETH->MACMDIODR = val;
ETH->MACMDIOAR = ar;
while (ETH->MACMDIOAR & ETH_MACMDIOAR_MB) {
}
#else
while (ETH->MACMIIAR & ETH_MACMIIAR_MB) {
}
ETH->MACMIIDR = val;
uint32_t ar = ETH->MACMIIAR;
ar = reg << ETH_MACMIIAR_MR_Pos | (ar & ETH_MACMIIAR_CR_Msk) | ETH_MACMIIAR_MW | ETH_MACMIIAR_MB;
ETH->MACMIIAR = ar;
while (ETH->MACMIIAR & ETH_MACMIIAR_MB) {
}
#endif
}
STATIC uint32_t eth_phy_read(uint32_t reg) {
#if defined(STM32H7)
while (ETH->MACMDIOAR & ETH_MACMDIOAR_MB) {
}
uint32_t ar = ETH->MACMDIOAR;
ar &= ~ETH_MACMDIOAR_RDA_Msk;
ar |= reg << ETH_MACMDIOAR_RDA_Pos;
ar &= ~ETH_MACMDIOAR_MOC_Msk;
ar |= ETH_MACMDIOAR_MOC_RD;
ar |= ETH_MACMDIOAR_MB;
ETH->MACMDIOAR = ar;
while (ETH->MACMDIOAR & ETH_MACMDIOAR_MB) {
}
return ETH->MACMDIODR;
#else
while (ETH->MACMIIAR & ETH_MACMIIAR_MB) {
}
uint32_t ar = ETH->MACMIIAR;
ar = reg << ETH_MACMIIAR_MR_Pos | (ar & ETH_MACMIIAR_CR_Msk) | ETH_MACMIIAR_MB;
ETH->MACMIIAR = ar;
while (ETH->MACMIIAR & ETH_MACMIIAR_MB) {
}
return ETH->MACMIIDR;
#endif
}
void eth_init(eth_t *self, int mac_idx) {
mp_hal_get_mac(mac_idx, &self->netif.hwaddr[0]);
self->netif.hwaddr_len = 6;
// Configure GPIO
mp_hal_pin_config_alt_static(MICROPY_HW_ETH_MDC, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, STATIC_AF_ETH_MDC);
mp_hal_pin_config_alt_static(MICROPY_HW_ETH_MDIO, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, STATIC_AF_ETH_MDIO);
mp_hal_pin_config_alt_static_speed(MICROPY_HW_ETH_RMII_REF_CLK, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_MEDIUM, STATIC_AF_ETH_RMII_REF_CLK);
mp_hal_pin_config_alt_static(MICROPY_HW_ETH_RMII_CRS_DV, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, STATIC_AF_ETH_RMII_CRS_DV);
mp_hal_pin_config_alt_static(MICROPY_HW_ETH_RMII_RXD0, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, STATIC_AF_ETH_RMII_RXD0);
mp_hal_pin_config_alt_static(MICROPY_HW_ETH_RMII_RXD1, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, STATIC_AF_ETH_RMII_RXD1);
mp_hal_pin_config_alt_static(MICROPY_HW_ETH_RMII_TX_EN, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, STATIC_AF_ETH_RMII_TX_EN);
mp_hal_pin_config_alt_static(MICROPY_HW_ETH_RMII_TXD0, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, STATIC_AF_ETH_RMII_TXD0);
mp_hal_pin_config_alt_static(MICROPY_HW_ETH_RMII_TXD1, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, STATIC_AF_ETH_RMII_TXD1);
// Enable peripheral clock
#if defined(STM32H7)
__HAL_RCC_ETH1MAC_CLK_ENABLE();
__HAL_RCC_ETH1TX_CLK_ENABLE();
__HAL_RCC_ETH1RX_CLK_ENABLE();
#else
__HAL_RCC_ETH_CLK_ENABLE();
#endif
}
void eth_set_trace(eth_t *self, uint32_t value) {
self->trace_flags = value;
}
STATIC int eth_mac_init(eth_t *self) {
// Configure MPU
uint32_t irq_state = mpu_config_start();
mpu_config_region(MPU_REGION_ETH, (uint32_t)ð_dma, MPU_CONFIG_ETH(MPU_REGION_SIZE_16KB));
mpu_config_end(irq_state);
// Enable peripheral clock
#if defined(STM32H7)
__HAL_RCC_ETH1MAC_CLK_ENABLE();
__HAL_RCC_ETH1TX_CLK_ENABLE();
__HAL_RCC_ETH1RX_CLK_ENABLE();
__HAL_RCC_ETH1MAC_FORCE_RESET();
#else
__HAL_RCC_ETH_CLK_ENABLE();
__HAL_RCC_ETHMAC_FORCE_RESET();
#endif
// Select RMII interface
#if defined(STM32H7)
SYSCFG->PMCR = (SYSCFG->PMCR & ~SYSCFG_PMCR_EPIS_SEL_Msk) | SYSCFG_PMCR_EPIS_SEL_2;
#else
__HAL_RCC_SYSCFG_CLK_ENABLE();
SYSCFG->PMC |= SYSCFG_PMC_MII_RMII_SEL;
#endif
#if defined(STM32H7)
__HAL_RCC_ETH1MAC_RELEASE_RESET();
__HAL_RCC_ETH1MAC_CLK_SLEEP_ENABLE();
__HAL_RCC_ETH1TX_CLK_SLEEP_ENABLE();
__HAL_RCC_ETH1RX_CLK_SLEEP_ENABLE();
#else
__HAL_RCC_ETHMAC_RELEASE_RESET();
__HAL_RCC_ETHMAC_CLK_SLEEP_ENABLE();
__HAL_RCC_ETHMACTX_CLK_SLEEP_ENABLE();
__HAL_RCC_ETHMACRX_CLK_SLEEP_ENABLE();
#endif
// Do a soft reset of the MAC core
#if defined(STM32H7)
#define ETH_SOFT_RESET(eth) do { eth->DMAMR = ETH_DMAMR_SWR; } while (0)
#define ETH_IS_RESET(eth) (eth->DMAMR & ETH_DMAMR_SWR)
#else
#define ETH_SOFT_RESET(eth) do { eth->DMABMR = ETH_DMABMR_SR; } while (0)
#define ETH_IS_RESET(eth) (eth->DMABMR & ETH_DMABMR_SR)
#endif
ETH_SOFT_RESET(ETH);
mp_hal_delay_ms(2);
// Wait for soft reset to finish
uint32_t t0 = mp_hal_ticks_ms();
while (ETH_IS_RESET(ETH)) {
if (mp_hal_ticks_ms() - t0 > 1000) {
return -MP_ETIMEDOUT;
}
}
// Set MII clock range
uint32_t hclk = HAL_RCC_GetHCLKFreq();
uint32_t cr_div;
#if defined(STM32H7)
cr_div = ETH->MACMDIOAR & ~ETH_MACMDIOAR_CR;
if (hclk < 35000000) {
cr_div |= ETH_MACMDIOAR_CR_DIV16;
} else if (hclk < 60000000) {
cr_div |= ETH_MACMDIOAR_CR_DIV26;
} else if (hclk < 100000000) {
cr_div |= ETH_MACMDIOAR_CR_DIV42;
} else if (hclk < 150000000) {
cr_div |= ETH_MACMDIOAR_CR_DIV62;
} else {
cr_div |= ETH_MACMDIOAR_CR_DIV102;
}
ETH->MACMDIOAR = cr_div;
#else
if (hclk < 35000000) {
cr_div = ETH_MACMIIAR_CR_Div16;
} else if (hclk < 60000000) {
cr_div = ETH_MACMIIAR_CR_Div26;
} else if (hclk < 100000000) {
cr_div = ETH_MACMIIAR_CR_Div42;
} else if (hclk < 150000000) {
cr_div = ETH_MACMIIAR_CR_Div62;
} else {
cr_div = ETH_MACMIIAR_CR_Div102;
}
ETH->MACMIIAR = cr_div;
#endif
#if defined(STM32H7)
// don't skip 32bit words since our descriptors are continuous in memory
ETH->DMACCR &= ~(ETH_DMACCR_DSL_Msk);
#endif
// Reset the PHY
eth_phy_write(PHY_BCR, PHY_BCR_SOFT_RESET);
mp_hal_delay_ms(50);
// Wait for the PHY link to be established
int phy_state = 0;
t0 = mp_hal_ticks_ms();
while (phy_state != 3) {
if (mp_hal_ticks_ms() - t0 > PHY_INIT_TIMEOUT_MS) {
eth_mac_deinit(self);
return -MP_ETIMEDOUT;
}
uint16_t bcr = eth_phy_read(0);
uint16_t bsr = eth_phy_read(1);
switch (phy_state) {
case 0:
if (!(bcr & PHY_BCR_SOFT_RESET)) {
phy_state = 1;
}
break;
case 1:
if (bsr & PHY_BSR_LINK_STATUS) {
eth_phy_write(PHY_BCR, PHY_BCR_AUTONEG_EN);
phy_state = 2;
}
break;
case 2:
if ((bsr & (PHY_BSR_AUTONEG_DONE | PHY_BSR_LINK_STATUS))
== (PHY_BSR_AUTONEG_DONE | PHY_BSR_LINK_STATUS)) {
phy_state = 3;
}
break;
}
mp_hal_delay_ms(2);
}
// Get register with link status
uint16_t phy_scsr = eth_phy_read(PHY_SCSR);
// Burst mode configuration
#if defined(STM32H7)
ETH->DMASBMR = ETH->DMASBMR & ~ETH_DMASBMR_AAL & ~ETH_DMASBMR_FB;
#else
ETH->DMABMR = 0;
#endif
mp_hal_delay_ms(2);
// Select DMA interrupts
#if defined(STM32H7)
ETH->DMACIER = ETH->DMACIER
| ETH_DMACIER_NIE // enable normal interrupts
| ETH_DMACIER_RIE // enable RX interrupt
;
#else
ETH->DMAIER =
ETH_DMAIER_NISE // enable normal interrupts
| ETH_DMAIER_RIE // enable RX interrupt
;
#endif
// Configure RX descriptor lists
for (size_t i = 0; i < RX_BUF_NUM; ++i) {
#if defined(STM32H7)
eth_dma.rx_descr[i].rdes3 =
1 << RX_DESCR_3_OWN_Pos
| (1 << RX_DESCR_3_BUF1V_Pos) // buf1 address valid
| (1 << RX_DESCR_3_IOC_Pos) // Interrupt Enabled on Completion
;
eth_dma.rx_descr[i].rdes0 = (uint32_t)ð_dma.rx_buf[i * RX_BUF_SIZE]; // buf 1 address
#else
eth_dma.rx_descr[i].rdes0 = 1 << RX_DESCR_0_OWN_Pos;
eth_dma.rx_descr[i].rdes1 =
1 << RX_DESCR_1_RCH_Pos // chained
| RX_BUF_SIZE << RX_DESCR_1_RBS1_Pos
;
eth_dma.rx_descr[i].rdes2 = (uint32_t)ð_dma.rx_buf[i * RX_BUF_SIZE];
eth_dma.rx_descr[i].rdes3 = (uint32_t)ð_dma.rx_descr[(i + 1) % RX_BUF_NUM];
#endif
}
#if defined(STM32H7)
ETH->DMACRDLAR = (uint32_t)ð_dma.rx_descr[0];
#else
ETH->DMARDLAR = (uint32_t)ð_dma.rx_descr[0];
#endif
eth_dma.rx_descr_idx = 0;
// Configure TX descriptor lists
for (size_t i = 0; i < TX_BUF_NUM; ++i) {
#if defined(STM32H7)
eth_dma.tx_descr[i].tdes0 = 0;
eth_dma.tx_descr[i].tdes1 = 0;
eth_dma.tx_descr[i].tdes2 = TX_BUF_SIZE & TX_DESCR_2_B1L_Msk;
eth_dma.tx_descr[i].tdes3 = 0;
#else
eth_dma.tx_descr[i].tdes0 = 1 << TX_DESCR_0_TCH_Pos;
eth_dma.tx_descr[i].tdes1 = 0;
eth_dma.tx_descr[i].tdes2 = 0;
eth_dma.tx_descr[i].tdes3 = (uint32_t)ð_dma.tx_descr[(i + 1) % TX_BUF_NUM];
#endif
}
#if defined(STM32H7)
// set number of descriptors and buffers
ETH->DMACTDRLR = TX_BUF_NUM - 1;
ETH->DMACRDRLR = RX_BUF_NUM - 1;
ETH->DMACTDLAR = (uint32_t)ð_dma.tx_descr[0];
#else
ETH->DMATDLAR = (uint32_t)ð_dma.tx_descr[0];
#endif
eth_dma.tx_descr_idx = 0;
// Configure DMA
#if defined(STM32H7)
// read from RX FIFO only after a full frame is written
ETH->MTLRQOMR = ETH_MTLRQOMR_RSF;
// transmission starts when a full packet resides in the Tx queue
ETH->MTLTQOMR = ETH_MTLTQOMR_TSF;
#else
ETH->DMAOMR =
ETH_DMAOMR_RSF // read from RX FIFO after a full frame is written
| ETH_DMAOMR_TSF // transmit when a full frame is in TX FIFO (needed by errata)
;
#endif
mp_hal_delay_ms(2);
// Select MAC filtering options
#if defined(STM32H7)
ETH->MACPFR = ETH_MACPFR_RA; // pass all frames up
#else
ETH->MACFFR =
ETH_MACFFR_RA // pass all frames up
;
#endif
mp_hal_delay_ms(2);
// Set MAC address
u8_t *mac = &self->netif.hwaddr[0];
ETH->MACA0HR = mac[5] << 8 | mac[4];
mp_hal_delay_ms(2);
ETH->MACA0LR = mac[3] << 24 | mac[2] << 16 | mac[1] << 8 | mac[0];
mp_hal_delay_ms(2);
// Set main MAC control register
ETH->MACCR =
(phy_scsr & PHY_SCSR_SPEED_Msk) == PHY_SCSR_SPEED_10FULL ? ETH_MACCR_DM
: (phy_scsr & PHY_SCSR_SPEED_Msk) == PHY_SCSR_SPEED_100HALF ? ETH_MACCR_FES
: (phy_scsr & PHY_SCSR_SPEED_Msk) == PHY_SCSR_SPEED_100FULL ? (ETH_MACCR_FES | ETH_MACCR_DM)
: 0
;
mp_hal_delay_ms(2);
// Start MAC layer
ETH->MACCR |=
ETH_MACCR_TE // enable TX
| ETH_MACCR_RE // enable RX
;
mp_hal_delay_ms(2);
// Start DMA layer
#if defined(STM32H7)
ETH->DMACRCR |= ETH_DMACRCR_SR; // start RX
ETH->DMACTCR |= ETH_DMACTCR_ST; // start TX
#else
ETH->DMAOMR |=
ETH_DMAOMR_ST // start TX
| ETH_DMAOMR_SR // start RX
;
#endif
mp_hal_delay_ms(2);
// Enable interrupts
NVIC_SetPriority(ETH_IRQn, IRQ_PRI_PENDSV);
HAL_NVIC_EnableIRQ(ETH_IRQn);
return 0;
}
STATIC void eth_mac_deinit(eth_t *self) {
(void)self;
HAL_NVIC_DisableIRQ(ETH_IRQn);
#if defined(STM32H7)
__HAL_RCC_ETH1MAC_FORCE_RESET();
__HAL_RCC_ETH1MAC_RELEASE_RESET();
__HAL_RCC_ETH1MAC_CLK_DISABLE();
#else
__HAL_RCC_ETHMAC_FORCE_RESET();
__HAL_RCC_ETHMAC_RELEASE_RESET();
__HAL_RCC_ETH_CLK_DISABLE();
#endif
}
STATIC int eth_tx_buf_get(size_t len, uint8_t **buf) {
if (len > TX_BUF_SIZE) {
return -MP_EINVAL;
}
// Wait for DMA to release the current TX descriptor (if it has it)
eth_dma_tx_descr_t *tx_descr = ð_dma.tx_descr[eth_dma.tx_descr_idx];
uint32_t t0 = mp_hal_ticks_ms();
for (;;) {
#if defined(STM32H7)
if (!(tx_descr->tdes3 & (1 << TX_DESCR_3_OWN_Pos))) {
break;
}
#else
if (!(tx_descr->tdes0 & (1 << TX_DESCR_0_OWN_Pos))) {
break;
}
#endif
if (mp_hal_ticks_ms() - t0 > 1000) {
return -MP_ETIMEDOUT;
}
}
#if defined(STM32H7)
// Update TX descriptor with length and buffer pointer
*buf = ð_dma.tx_buf[eth_dma.tx_descr_idx * TX_BUF_SIZE];
tx_descr->tdes2 = len & TX_DESCR_2_B1L_Msk;
tx_descr->tdes0 = (uint32_t)*buf;
#else
// Update TX descriptor with length, buffer pointer and linked list pointer
*buf = ð_dma.tx_buf[eth_dma.tx_descr_idx * TX_BUF_SIZE];
tx_descr->tdes1 = len << TX_DESCR_1_TBS1_Pos;
tx_descr->tdes2 = (uint32_t)*buf;
tx_descr->tdes3 = (uint32_t)ð_dma.tx_descr[(eth_dma.tx_descr_idx + 1) % TX_BUF_NUM];
#endif
return 0;
}
STATIC int eth_tx_buf_send(void) {
// Get TX descriptor and move to next one
eth_dma_tx_descr_t *tx_descr = ð_dma.tx_descr[eth_dma.tx_descr_idx];
eth_dma.tx_descr_idx = (eth_dma.tx_descr_idx + 1) % TX_BUF_NUM;
// Schedule to send next outgoing frame
#if defined(STM32H7)
tx_descr->tdes3 =
1 << TX_DESCR_3_OWN_Pos // owned by DMA
| 1 << TX_DESCR_3_LD_Pos // last segment
| 1 << TX_DESCR_3_FD_Pos // first segment
| 3 << TX_DESCR_3_CIC_Pos // enable all checksums inserted by hardware
;
#else
tx_descr->tdes0 =
1 << TX_DESCR_0_OWN_Pos // owned by DMA
| 1 << TX_DESCR_0_LS_Pos // last segment
| 1 << TX_DESCR_0_FS_Pos // first segment
| 3 << TX_DESCR_0_CIC_Pos // enable all checksums inserted by hardware
| 1 << TX_DESCR_0_TCH_Pos // TX descriptor is chained
;
#endif
// Notify ETH DMA that there is a new TX descriptor for sending
__DMB();
#if defined(STM32H7)
if (ETH->DMACSR & ETH_DMACSR_TBU) {
ETH->DMACSR = ETH_DMACSR_TBU;
}
ETH->DMACTDTPR = (uint32_t)ð_dma.tx_descr[eth_dma.tx_descr_idx];
#else
if (ETH->DMASR & ETH_DMASR_TBUS) {
ETH->DMASR = ETH_DMASR_TBUS;
ETH->DMATPDR = 0;
}
#endif
return 0;
}
STATIC void eth_dma_rx_free(void) {
// Get RX descriptor, RX buffer and move to next one
eth_dma_rx_descr_t *rx_descr = ð_dma.rx_descr[eth_dma.rx_descr_idx];
uint8_t *buf = ð_dma.rx_buf[eth_dma.rx_descr_idx * RX_BUF_SIZE];
eth_dma.rx_descr_idx = (eth_dma.rx_descr_idx + 1) % RX_BUF_NUM;
// Schedule to get next incoming frame
#if defined(STM32H7)
rx_descr->rdes0 = (uint32_t)buf;
rx_descr->rdes3 = 1 << RX_DESCR_3_OWN_Pos; // owned by DMA
rx_descr->rdes3 |= 1 << RX_DESCR_3_BUF1V_Pos; // buf 1 address valid
rx_descr->rdes3 |= 1 << RX_DESCR_3_IOC_Pos; // Interrupt Enabled on Completion
#else
rx_descr->rdes1 =
1 << RX_DESCR_1_RCH_Pos // RX descriptor is chained
| RX_BUF_SIZE << RX_DESCR_1_RBS1_Pos // maximum buffer length
;
rx_descr->rdes2 = (uint32_t)buf;
rx_descr->rdes3 = (uint32_t)ð_dma.rx_descr[eth_dma.rx_descr_idx];
rx_descr->rdes0 = 1 << RX_DESCR_0_OWN_Pos; // owned by DMA
#endif
// Notify ETH DMA that there is a new RX descriptor available
__DMB();
#if defined(STM32H7)
ETH->DMACRDTPR = (uint32_t)&rx_descr[eth_dma.rx_descr_idx];
#else
ETH->DMARPDR = 0;
#endif
}
void ETH_IRQHandler(void) {
#if defined(STM32H7)
uint32_t sr = ETH->DMACSR;
ETH->DMACSR = ETH_DMACSR_NIS;
uint32_t rx_interrupt = sr & ETH_DMACSR_RI;
#else
uint32_t sr = ETH->DMASR;
ETH->DMASR = ETH_DMASR_NIS;
uint32_t rx_interrupt = sr & ETH_DMASR_RS;
#endif
if (rx_interrupt) {
#if defined(STM32H7)
ETH->DMACSR = ETH_DMACSR_RI;
#else
ETH->DMASR = ETH_DMASR_RS;
#endif
for (;;) {
#if defined(STM32H7)
eth_dma_rx_descr_t *rx_descr_l = ð_dma.rx_descr[eth_dma.rx_descr_idx];
if (rx_descr_l->rdes3 & (1 << RX_DESCR_3_OWN_Pos)) {
// No more RX descriptors ready to read
break;
}
#else
eth_dma_rx_descr_t *rx_descr = ð_dma.rx_descr[eth_dma.rx_descr_idx];
if (rx_descr->rdes0 & (1 << RX_DESCR_0_OWN_Pos)) {
// No more RX descriptors ready to read
break;
}
#endif
// Get RX buffer containing new frame
#if defined(STM32H7)
size_t len = (rx_descr_l->rdes3 & RX_DESCR_3_PL_Msk);
#else
size_t len = (rx_descr->rdes0 & RX_DESCR_0_FL_Msk) >> RX_DESCR_0_FL_Pos;
#endif
len -= 4; // discard CRC at end
#if defined(STM32H7)
uint8_t *buf = ð_dma.rx_buf[eth_dma.rx_descr_idx * RX_BUF_SIZE];
#else
uint8_t *buf = (uint8_t *)rx_descr->rdes2;
#endif
// Process frame
eth_process_frame(ð_instance, len, buf);
eth_dma_rx_free();
}
}
}
/*******************************************************************************/
// ETH-LwIP bindings
#define TRACE_ASYNC_EV (0x0001)
#define TRACE_ETH_TX (0x0002)
#define TRACE_ETH_RX (0x0004)
#define TRACE_ETH_FULL (0x0008)
STATIC void eth_trace(eth_t *self, size_t len, const void *data, unsigned int flags) {
if (((flags & NETUTILS_TRACE_IS_TX) && (self->trace_flags & TRACE_ETH_TX))
|| (!(flags & NETUTILS_TRACE_IS_TX) && (self->trace_flags & TRACE_ETH_RX))) {
const uint8_t *buf;
if (len == (size_t)-1) {
// data is a pbuf
const struct pbuf *pbuf = data;
buf = pbuf->payload;
len = pbuf->len; // restricted to print only the first chunk of the pbuf
} else {
// data is actual data buffer
buf = data;
}
if (self->trace_flags & TRACE_ETH_FULL) {
flags |= NETUTILS_TRACE_PAYLOAD;
}
netutils_ethernet_trace(MP_PYTHON_PRINTER, len, buf, flags);
}
}
STATIC err_t eth_netif_output(struct netif *netif, struct pbuf *p) {
// This function should always be called from a context where PendSV-level IRQs are disabled
LINK_STATS_INC(link.xmit);
eth_trace(netif->state, (size_t)-1, p, NETUTILS_TRACE_IS_TX | NETUTILS_TRACE_NEWLINE);
uint8_t *buf;
int ret = eth_tx_buf_get(p->tot_len, &buf);
if (ret == 0) {
pbuf_copy_partial(p, buf, p->tot_len, 0);
ret = eth_tx_buf_send();
}
return ret ? ERR_BUF : ERR_OK;
}
STATIC err_t eth_netif_init(struct netif *netif) {
netif->linkoutput = eth_netif_output;
netif->output = etharp_output;
netif->mtu = 1500;
netif->flags = NETIF_FLAG_BROADCAST | NETIF_FLAG_ETHARP | NETIF_FLAG_ETHERNET | NETIF_FLAG_IGMP;
// Checksums only need to be checked on incoming frames, not computed on outgoing frames
NETIF_SET_CHECKSUM_CTRL(netif,
NETIF_CHECKSUM_CHECK_IP
| NETIF_CHECKSUM_CHECK_UDP
| NETIF_CHECKSUM_CHECK_TCP
| NETIF_CHECKSUM_CHECK_ICMP
| NETIF_CHECKSUM_CHECK_ICMP6);
return ERR_OK;
}
STATIC void eth_lwip_init(eth_t *self) {
ip_addr_t ipconfig[4];
IP4_ADDR(&ipconfig[0], 0, 0, 0, 0);
IP4_ADDR(&ipconfig[2], 192, 168, 0, 1);
IP4_ADDR(&ipconfig[1], 255, 255, 255, 0);
IP4_ADDR(&ipconfig[3], 8, 8, 8, 8);
MICROPY_PY_LWIP_ENTER
struct netif *n = &self->netif;
n->name[0] = 'e';
n->name[1] = '0';
netif_add(n, &ipconfig[0], &ipconfig[1], &ipconfig[2], self, eth_netif_init, ethernet_input);
netif_set_hostname(n, mod_network_hostname);
netif_set_default(n);
netif_set_up(n);
dns_setserver(0, &ipconfig[3]);
dhcp_set_struct(n, &self->dhcp_struct);
dhcp_start(n);
netif_set_link_up(n);
MICROPY_PY_LWIP_EXIT
}
STATIC void eth_lwip_deinit(eth_t *self) {
MICROPY_PY_LWIP_ENTER
for (struct netif *netif = netif_list; netif != NULL; netif = netif->next) {
if (netif == &self->netif) {
netif_remove(netif);
netif->ip_addr.addr = 0;
netif->flags = 0;
}
}
MICROPY_PY_LWIP_EXIT
}
STATIC void eth_process_frame(eth_t *self, size_t len, const uint8_t *buf) {
eth_trace(self, len, buf, NETUTILS_TRACE_NEWLINE);
struct netif *netif = &self->netif;
if (netif->flags & NETIF_FLAG_LINK_UP) {
struct pbuf *p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL);
if (p != NULL) {
pbuf_take(p, buf, len);
if (netif->input(p, netif) != ERR_OK) {
pbuf_free(p);
}
}
}
}
struct netif *eth_netif(eth_t *self) {
return &self->netif;
}
int eth_link_status(eth_t *self) {
struct netif *netif = &self->netif;
if ((netif->flags & (NETIF_FLAG_UP | NETIF_FLAG_LINK_UP))
== (NETIF_FLAG_UP | NETIF_FLAG_LINK_UP)) {
if (netif->ip_addr.addr != 0) {
return 3; // link up
} else {
return 2; // link no-ip;
}
} else {
if (eth_phy_read(PHY_BSR) & PHY_BSR_LINK_STATUS) {
return 1; // link up
} else {
return 0; // link down
}
}
}
int eth_start(eth_t *self) {
eth_lwip_deinit(self);
// Make sure Eth is Not in low power mode.
eth_low_power_mode(self, false);
int ret = eth_mac_init(self);
if (ret < 0) {
return ret;
}
eth_lwip_init(self);
return 0;
}
int eth_stop(eth_t *self) {
eth_lwip_deinit(self);
eth_mac_deinit(self);
return 0;
}
void eth_low_power_mode(eth_t *self, bool enable) {
(void)self;
// Enable eth clock
#if defined(STM32H7)
__HAL_RCC_ETH1MAC_CLK_ENABLE();
#else
__HAL_RCC_ETH_CLK_ENABLE();
#endif
uint16_t bcr = eth_phy_read(PHY_BCR);
if (enable) {
// Enable low-power mode.
eth_phy_write(PHY_BCR, bcr | PHY_BCR_POWER_DOWN);
// Disable eth clock.
#if defined(STM32H7)
__HAL_RCC_ETH1MAC_CLK_DISABLE();
#else
__HAL_RCC_ETH_CLK_DISABLE();
#endif
} else {
// Disable low-power mode.
eth_phy_write(PHY_BCR, bcr & (~PHY_BCR_POWER_DOWN));
}
}
#endif // defined(MICROPY_HW_ETH_MDC)