-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
87 lines (76 loc) · 3.26 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import argparse
import os
from glob import glob
import numpy as np
from kapre.time_frequency import STFT, Magnitude, ApplyFilterbank, MagnitudeToDecibel
from sklearn.preprocessing import LabelEncoder
from tensorflow.keras.models import load_model
from tqdm import tqdm
from clean import downsample_mono, envelope
ans = {
0: 'blues',
1: 'classical',
2: 'country',
3: 'disco',
4: 'hiphop',
5: 'jazz',
6: 'metal',
7: 'pop',
8: 'reggae',
9: 'rock'
}
def make_prediction(args):
model = load_model(args.model_fn,
custom_objects={'STFT': STFT,
'Magnitude': Magnitude,
'ApplyFilterbank': ApplyFilterbank,
'MagnitudeToDecibel': MagnitudeToDecibel})
wav_paths = glob('{}/**'.format(args.src_dir), recursive=True)
wav_paths = sorted([x.replace(os.sep, '/') for x in wav_paths if '.wav' in x])
classes = sorted(os.listdir(args.src_dir))
labels = [os.path.split(x)[0].split('/')[-1] for x in wav_paths]
le = LabelEncoder()
y_true = le.fit_transform(labels)
results = []
for z, wav_fn in tqdm(enumerate(wav_paths), total=len(wav_paths)):
rate, wav = downsample_mono(wav_fn, args.sr)
mask, env = envelope(wav, rate, threshold=args.threshold)
clean_wav = wav[mask]
step = int(args.sr * args.dt)
batch = []
for i in range(0, clean_wav.shape[0], step):
sample = clean_wav[i:i + step]
sample = sample.reshape(-1, 1)
if sample.shape[0] < step:
tmp = np.zeros(shape=(step, 1), dtype=np.float32)
tmp[:sample.shape[0], :] = sample.flatten().reshape(-1, 1)
sample = tmp
batch.append(sample)
X_batch = np.array(batch, dtype=np.float32)
y_pred = model.predict(X_batch)
y_mean = np.mean(y_pred, axis=0)
y_pred = np.argmax(y_mean)
real_class = os.path.dirname(wav_fn).split('/')[-1]
# print('Actual class: {}, Predicted class: {}'.format(real_class, classes[y_pred]))
results.append(y_mean)
# print(y_pred)
for key, value in ans.items():
if y_pred == key:
print(value)
# np.save(os.path.join('logs', args.pred_fn), np.array(results))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Audio Classification Training')
parser.add_argument('--model_fn', type=str, default='models/lstm.h5',
help='model file to make predictions')
parser.add_argument('--pred_fn', type=str, default='y_pred',
help='fn to write predictions in logs dir')
parser.add_argument('--src_dir', type=str, default='predict',
help='directory containing wavfiles to predict')
parser.add_argument('--dt', type=float, default=1.0,
help='time in seconds to sample audio')
parser.add_argument('--sr', type=int, default=16000,
help='sample rate of clean audio')
parser.add_argument('--threshold', type=str, default=20,
help='threshold magnitude for np.int16 dtype')
args, _ = parser.parse_known_args()
make_prediction(args)