forked from shubhamOjha1000/Optimizing-Conformal-Prediction-Sets-for-Pathological-Image_Classification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBreast_Cancer_Eval_CP_method.py
227 lines (137 loc) · 8.44 KB
/
Breast_Cancer_Eval_CP_method.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import argparse
import pandas as pd
from sklearn.model_selection import train_test_split
from CP_methods import THR, APS, RAPS
import torch
from utils import avg_set_size_metric, coverage_gap_metric, breast_cancer_class_Overlap_metric, breast_cancer_confusion_set_Overlap_metric
import numpy as np
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--Trials', default=100, type=int, help= 'Number of total trials')
parser.add_argument('--softmax_output_file_path', default='/path', type=str, help='path to the softmax_output_file')
parser.add_argument('--expt_no', default=1, type=int, help= 'Expt no :-1, 2, 3, 4')
parser.add_argument('--split', default=0.1, type=float, help='Calib/test split ratio')
parser.add_argument('--CP_method', default='THR', type=str, help='CP method :- 1)THR 2)APS 3)RAPS')
parser.add_argument('--alpha', default=0.1, type=float, help='value of alpha for CP coverage')
parser.add_argument('--rand', default=True, type=bool, help='rand :- True/False for RAPS')
parser.add_argument('--k_reg', default=2, type=int, help='value of k_reg for RAPS')
parser.add_argument('--lambd', default=0.1, type=float, help='value of lambd for RAPS')
args = parser.parse_args()
avg_set_size_len_for_T_trials = []
avg_coverage_gap_for_T_trials = []
avg_coverage_for_T_trials = []
normal_avg_set_size_len_for_T_trials = []
abnormal_avg_set_size_len_for_T_trials = []
perecentage_of_overlap_for_T_trials = []
confusion_set_Overlap_metric_for_T_trials = []
for t in range(args.Trials):
print()
print(f'Trials :- {t}')
print()
# loading the annotation file :-
df = pd.read_csv(args.softmax_output_file_path)
df = df.sample(frac=1).reset_index(drop=True)
# calib-test split :-
feature_test, feature_calib = train_test_split(df, test_size = args.split, stratify=df['Label'], random_state=42)
feature_test = feature_test.reset_index(drop=True)
feature_calib = feature_calib.reset_index(drop=True)
prob_output = feature_calib.iloc[:,:-1]
df_np = prob_output.values
df_prob_output_calib = torch.tensor(df_np, dtype=torch.float32)
prob_output = feature_test.iloc[:,:-1]
df_np = prob_output.values
df_prob_output_test = torch.tensor(df_np, dtype=torch.float32)
true_class = feature_calib.iloc[:,-1]
df_np = true_class.values
df_true_class_calib = torch.tensor(df_np, dtype=torch.int)
true_class = feature_test.iloc[:,-1]
df_np = true_class.values
df_true_class_test = torch.tensor(df_np, dtype=torch.int)
if args.CP_method == 'THR':
conformal_wrapper = THR(df_prob_output_calib, df_true_class_calib, args.alpha)
quantile_value = conformal_wrapper.quantile()
conformal_set = conformal_wrapper.prediction(df_prob_output_test, quantile_value)
elif args.CP_method == 'APS':
conformal_wrapper = APS(df_prob_output_calib, df_true_class_calib, args.alpha)
quantile_value = conformal_wrapper.quantile()
conformal_set = conformal_wrapper.prediction(df_prob_output_test, quantile_value)
elif args.CP_method == 'RAPS':
conformal_wrapper = RAPS(df_prob_output_calib, df_true_class_calib, args.alpha, args.k_reg, args.lambd, args.rand)
quantile_value = conformal_wrapper.quantile()
conformal_set = conformal_wrapper.prediction(df_prob_output_test, quantile_value)
if args.expt_no == 1:
avg_set_size = avg_set_size_metric(conformal_set)
print(f'avg_set_size:- {avg_set_size}')
coverage_gap, coverage = coverage_gap_metric(conformal_set, df_true_class_test, args.alpha)
#print(f'coverage_gap:- {coverage_gap}')
#print(f'coverage:- {coverage}')
avg_set_size_len_for_T_trials.append(avg_set_size)
avg_coverage_gap_for_T_trials.append(coverage_gap)
avg_coverage_for_T_trials.append(coverage)
elif args.expt_no == 2:
label = df_true_class_test
indices_0 = torch.nonzero(label == 0).squeeze()
indices_1 = torch.nonzero(label == 1).squeeze()
indices_2 = torch.nonzero(label == 2).squeeze()
indices_3 = torch.nonzero(label == 3).squeeze()
indices_4 = torch.nonzero(label == 4).squeeze()
indices_5 = torch.nonzero(label == 5).squeeze()
indices_6 = torch.nonzero(label == 6).squeeze()
indices_7 = torch.nonzero(label == 7).squeeze()
Normal_idx = torch.cat((indices_0, indices_1, indices_2, indices_3))
Abnormal_idx = torch.cat((indices_4, indices_5, indices_6, indices_7))
normal_conformal_prediction_set = conformal_set[Normal_idx, :]
abnormal_conformal_prediction_set = conformal_set[Abnormal_idx, :]
normal_avg_set_size_len = avg_set_size_metric(normal_conformal_prediction_set)
abnormal_avg_set_size_len = avg_set_size_metric(abnormal_conformal_prediction_set)
normal_avg_set_size_len_for_T_trials.append(normal_avg_set_size_len)
abnormal_avg_set_size_len_for_T_trials.append(abnormal_avg_set_size_len)
elif args.expt_no == 3:
perecentage_of_overlap = breast_cancer_class_Overlap_metric(conformal_set, df_true_class_test)
perecentage_of_overlap_for_T_trials.append(perecentage_of_overlap)
elif args.expt_no == 4:
perecentage_of_confusion = breast_cancer_confusion_set_Overlap_metric(conformal_set, df_true_class_test)
#print(f'perecentage_of_confusion :- {perecentage_of_confusion}')
confusion_set_Overlap_metric_for_T_trials.append(perecentage_of_confusion)
if args.expt_no == 1:
avg_set_size_len_for_T_trials = np.array(avg_set_size_len_for_T_trials)
average = np.mean(avg_set_size_len_for_T_trials)
std_dev = np.std(avg_set_size_len_for_T_trials, ddof=1)
print()
print()
print()
print()
print(f"Average set_size_len_for_T_trials: {average}")
print(f"Standard Deviation set_size_len_for_T_trials: {std_dev}")
elif args.expt_no == 2:
print()
print()
print(f'set_size :-')
normal_avg_set_size_len_for_T_trials = np.array(normal_avg_set_size_len_for_T_trials)
normal_average_set_size_len = np.mean(normal_avg_set_size_len_for_T_trials)
normal_std_dev_set_size_len = np.std(normal_avg_set_size_len_for_T_trials, ddof=1)
print()
print(f"normal_average_set_size_len: {normal_average_set_size_len}")
print(f"normal_std_dev_set_size_len: {normal_std_dev_set_size_len}")
abnormal_avg_set_size_len_for_T_trials = np.array(abnormal_avg_set_size_len_for_T_trials)
abnormal_average_set_size_len = np.mean(abnormal_avg_set_size_len_for_T_trials)
abnormal_std_dev_set_size_len = np.std(abnormal_avg_set_size_len_for_T_trials, ddof=1)
print()
print(f"abnormal_average_set_size_len: {abnormal_average_set_size_len}")
print(f"abnormal_std_dev_set_size_len: {abnormal_std_dev_set_size_len}")
elif args.expt_no == 3:
perecentage_of_overlap_for_T_trials = np.array(perecentage_of_overlap_for_T_trials)
average_perecentage_of_overlap_for_T_trials = np.mean(perecentage_of_overlap_for_T_trials)
std_dev_perecentage_of_overlap_for_T_trials = np.std(perecentage_of_overlap_for_T_trials, ddof=1)
print()
print(f"average_perecentage_of_overlap_for_T_trials: {average_perecentage_of_overlap_for_T_trials}")
print(f"std_dev_perecentage_of_overlap_for_T_trials: {std_dev_perecentage_of_overlap_for_T_trials}")
elif args.expt_no == 4:
confusion_set_Overlap_metric_for_T_trials = np.array(confusion_set_Overlap_metric_for_T_trials)
average_confusion_set_Overlap_metric_for_T_trials = np.mean(confusion_set_Overlap_metric_for_T_trials)
std_dev_confusion_set_Overlap_metric_for_T_trials = np.std(confusion_set_Overlap_metric_for_T_trials, ddof=1)
print()
print(f"average_confusion_set_Overlap_metric_for_T_trials: {average_confusion_set_Overlap_metric_for_T_trials}")
print(f"std_dev_confusion_set_Overlap_metric_for_T_trials: {std_dev_confusion_set_Overlap_metric_for_T_trials}")
if __name__ == '__main__':
main()