-
Notifications
You must be signed in to change notification settings - Fork 21
/
record_faces.py.orig
72 lines (55 loc) · 2.03 KB
/
record_faces.py.orig
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import numpy as np
import cv2
# instantiate a camera object to capture images
cam = cv2.VideoCapture(1)
# create a haar-cascade object for face detection
face_cas = cv2.CascadeClassifier('./haarcascade_frontalface_default.xml')
# create a placeholder for storing the data
data = []
ix = 0 # current frame number
while True:
# retrieve the ret (boolean) and frame from camera
ret, frame = cam.read()
# if the camera is working fine, we proceed to extract the face
if ret == True:
# convert the current frame to grayscale
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# apply the haar cascade to detect faces in the current frame
# the other parameters 1.3 and 5 are fine tuning parameters
# for the haar cascade object
faces = face_cas.detectMultiScale(gray, 1.3, 5)
# for each face object we get, we have
# the corner coords (x, y)
# and the width and height of the face
for (x, y, w, h) in faces:
# get the face component from the image frame
face_component = frame[y:y+h, x:x+w, :]
# resize the face image to 50X50X3
fc = cv2.resize(face_component, (50, 50))
# store the face data after every 10 frames
# only if the number of entries is less than 20
if ix%10 == 0 and len(data) < 20:
data.append(fc)
# for visualization, draw a rectangle around the face
# in the image
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
ix += 1 # increment the current frame number
cv2.imshow('frame', frame) # display the frame
# if the user presses the escape key (ID: 27)
# or the number of images hits 20, we stop
# recording.
if cv2.waitKey(1) == 27 or len(data) >= 20:
break
else:
# if the camera is not working, print "error"
print "error"
# now we destroy the windows we have created
cv2.destroyAllWindows()
# convert the data to a numpy format
data = np.asarray(data)
# print the shape as a sanity-check
print data.shape
# save the data as a numpy matrix in an encoded format
np.save('face_01', data)
# We'll run the script for different people and store
# the data into multiple files