This repository has been archived by the owner on Mar 13, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
pagerank.py
160 lines (123 loc) · 4.72 KB
/
pagerank.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import os
import random
import re
import sys
import math
DAMPING = 0.85
SAMPLES = 100000
def main():
if len(sys.argv) != 2:
sys.exit("Usage: python pagerank.py corpus")
corpus = crawl(sys.argv[1])
ranks = sample_pagerank(corpus, DAMPING, SAMPLES)
print(f"PageRank Results from Sampling (n = {SAMPLES})")
for page in sorted(ranks):
print(f" {page}: {ranks[page]:.4f}")
ranks = iterate_pagerank(corpus, DAMPING)
print(f"PageRank Results from Iteration")
for page in sorted(ranks):
print(f" {page}: {ranks[page]:.4f}")
def crawl(directory):
"""
Parse a directory of HTML pages and check for links to other pages.
Return a dictionary where each key is a page, and values are
a list of all other pages in the corpus that are linked to by the page.
"""
pages = dict()
# Extract all links from HTML files
for filename in os.listdir(directory):
if not filename.endswith(".html"):
continue
with open(os.path.join(directory, filename)) as f:
contents = f.read()
links = re.findall(r"<a\s+(?:[^>]*?)href=\"([^\"]*)\"", contents)
pages[filename] = set(links) - {filename}
# Only include links to other pages in the corpus
for filename in pages:
pages[filename] = set(
link for link in pages[filename]
if link in pages
)
return pages
def transition_model(corpus, page, damping_factor):
"""
Return a probability distribution over which page to visit next,
given a current page.
With probability `damping_factor`, choose a link at random
linked to by `page`. With probability `1 - damping_factor`, choose
a link at random chosen from all pages in the corpus.
"""
dist = dict()
if corpus[page]:
for link in corpus:
dist[link] = (1 - damping_factor) / len(corpus)
if link in corpus[page]:
dist[link] += damping_factor / len(corpus[page])
else:
# Randomly choose a page if no links are found
for link in corpus:
dist[link] = 1 / len(corpus)
return dist
def sample_pagerank(corpus, damping_factor, n):
"""
Return PageRank values for each page by sampling `n` pages
according to transition model, starting with a page at random.
Return a dictionary where keys are page names, and values are
their estimated PageRank value (a value between 0 and 1). All
PageRank values should sum to 1.
"""
pagerank = dict()
# Initialize first sample with None
sample = None
for page in corpus:
# Initialize empty values
pagerank[page] = 0
for _ in range(n):
if sample is None:
# First sample is always random
sample = random.choice(list(corpus.keys()))
else:
# Generate new sample based on the previous sample's transition model
model = transition_model(corpus, sample, damping_factor)
population, weights = zip(*model.items())
sample = random.choice(random.choices(population, weights=weights))
pagerank[sample] += 1
for page in corpus:
pagerank[page] /= n
return pagerank
def iterate_pagerank(corpus, damping_factor):
"""
Return PageRank values for each page by iteratively updating
PageRank values until convergence.
Return a dictionary where keys are page names, and values are
their estimated PageRank value (a value between 0 and 1). All
PageRank values should sum to 1.
"""
pagerank = dict()
newrank = dict()
# Assign initial values
for page in corpus:
pagerank[page] = 1 / len(corpus)
loop = True
while loop:
# Calculate newrank values based on all current pagerank values
for page in pagerank:
total = 0
for possible_page in corpus:
# Keep all linked-to possible pages in mind
if page in corpus[possible_page]:
total += pagerank[possible_page] / len(corpus[possible_page])
if not corpus[possible_page]:
total += pagerank[possible_page] / len(corpus)
newrank[page] = (1 - damping_factor) / len(corpus) + damping_factor * total
# Break the loop once we're finished
loop = False
# If any of the values changes by more than the threshold, start the loop again
for page in pagerank:
if not math.isclose(newrank[page], pagerank[page], abs_tol=0.001):
loop = True
# Assign new values to current values
pagerank[page] = newrank[page]
return pagerank
if __name__ == "__main__":
main()