-
Notifications
You must be signed in to change notification settings - Fork 1
/
structured_linear.py
70 lines (57 loc) · 2.52 KB
/
structured_linear.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# Adapted from https://github.com/HazyResearch/fly/tree/master/src/models/layers
import math
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
class StructuredLinear(nn.Module):
def __init__(self, in_features, out_features, bias=True, device=None, dtype=None):
"""Subclasses should call reset_parameters
"""
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
self.in_features = in_features
self.out_features = out_features
# Subclasses may override {in,out}_features_extended
if not hasattr(self, 'in_features_extended'):
self.in_features_extended = in_features
if not hasattr(self, 'out_features_extended'):
self.out_features_extended = out_features
if bias:
self.bias = nn.Parameter(torch.zeros(out_features, **factory_kwargs))
else:
self.register_parameter('bias', None)
def reset_parameters(self) -> None:
self.set_weights_from_dense_init(dense_init_fn_=partial(init.kaiming_uniform_, a=math.sqrt(5)))
self.reset_parameters_bias()
def set_weights_from_dense_init(self, dense_init_fn_):
raise NotImplementedError
def reset_parameters_bias(self):
if self.bias is not None:
fan_in = self.bias.shape[-1]
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
init.uniform_(self.bias, -bound, bound)
@property
def saving(self):
raise NotImplementedError
def convert_to_dense_weight(self):
factory_kwargs = {'device': self.weight.device, 'dtype': self.weight.dtype}
dense_weight = self.forward_matmul(torch.eye(self.in_features, **factory_kwargs)).T
return dense_weight
def preprocess(self, x):
in_features = x.shape[-1]
if in_features < self.in_features_extended:
x = F.pad(x, (0, self.in_features_extended - in_features))
return x
def postprocess(self, output):
out_features_extended = output.shape[-1]
if out_features_extended > self.out_features:
output = output[..., :self.out_features]
return output
def forward_matmul(self, x):
raise NotImplementedError
def forward(self, x):
output = self.forward_matmul(x)
# Convert bias to output.dtype in case of AMP, otherwise bias and activation will be in FP32
return (output + self.bias.to(dtype=output.dtype)) if self.bias is not None else output