-
Notifications
You must be signed in to change notification settings - Fork 1
/
draft-ietf-rmcat-eval-criteria-05.html
926 lines (868 loc) · 47.2 KB
/
draft-ietf-rmcat-eval-criteria-05.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html lang="en" xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head profile="http://www.w3.org/2006/03/hcard http://dublincore.org/documents/2008/08/04/dc-html/">
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii" />
<title>Evaluating Congestion Control for Interactive Real-time Media </title>
<style type="text/css" title="Xml2Rfc (sans serif)">
/*<![CDATA[*/
a {
text-decoration: none;
}
/* info code from SantaKlauss at http://www.madaboutstyle.com/tooltip2.html */
a.info {
/* This is the key. */
position: relative;
z-index: 24;
text-decoration: none;
}
a.info:hover {
z-index: 25;
color: #FFF; background-color: #900;
}
a.info span { display: none; }
a.info:hover span.info {
/* The span will display just on :hover state. */
display: block;
position: absolute;
font-size: smaller;
top: 2em; left: -5em; width: 15em;
padding: 2px; border: 1px solid #333;
color: #900; background-color: #EEE;
text-align: left;
}
a.smpl {
color: black;
}
a:hover {
text-decoration: underline;
}
a:active {
text-decoration: underline;
}
address {
margin-top: 1em;
margin-left: 2em;
font-style: normal;
}
body {
color: black;
font-family: verdana, helvetica, arial, sans-serif;
font-size: 10pt;
max-width: 55em;
}
cite {
font-style: normal;
}
dd {
margin-right: 2em;
}
dl {
margin-left: 2em;
}
ul.empty {
list-style-type: none;
}
ul.empty li {
margin-top: .5em;
}
dl p {
margin-left: 0em;
}
dt {
margin-top: .5em;
}
h1 {
font-size: 14pt;
line-height: 21pt;
page-break-after: avoid;
}
h1.np {
page-break-before: always;
}
h1 a {
color: #333333;
}
h2 {
font-size: 12pt;
line-height: 15pt;
page-break-after: avoid;
}
h3, h4, h5, h6 {
font-size: 10pt;
page-break-after: avoid;
}
h2 a, h3 a, h4 a, h5 a, h6 a {
color: black;
}
img {
margin-left: 3em;
}
li {
margin-left: 2em;
margin-right: 2em;
}
ol {
margin-left: 2em;
margin-right: 2em;
}
ol p {
margin-left: 0em;
}
p {
margin-left: 2em;
margin-right: 2em;
}
pre {
margin-left: 3em;
background-color: lightyellow;
padding: .25em;
}
pre.text2 {
border-style: dotted;
border-width: 1px;
background-color: #f0f0f0;
width: 69em;
}
pre.inline {
background-color: white;
padding: 0em;
}
pre.text {
border-style: dotted;
border-width: 1px;
background-color: #f8f8f8;
width: 69em;
}
pre.drawing {
border-style: solid;
border-width: 1px;
background-color: #f8f8f8;
padding: 2em;
}
table {
margin-left: 2em;
}
table.tt {
vertical-align: top;
}
table.full {
border-style: outset;
border-width: 1px;
}
table.headers {
border-style: outset;
border-width: 1px;
}
table.tt td {
vertical-align: top;
}
table.full td {
border-style: inset;
border-width: 1px;
}
table.tt th {
vertical-align: top;
}
table.full th {
border-style: inset;
border-width: 1px;
}
table.headers th {
border-style: none none inset none;
border-width: 1px;
}
table.left {
margin-right: auto;
}
table.right {
margin-left: auto;
}
table.center {
margin-left: auto;
margin-right: auto;
}
caption {
caption-side: bottom;
font-weight: bold;
font-size: 9pt;
margin-top: .5em;
}
table.header {
border-spacing: 1px;
width: 95%;
font-size: 10pt;
color: white;
}
td.top {
vertical-align: top;
}
td.topnowrap {
vertical-align: top;
white-space: nowrap;
}
table.header td {
background-color: gray;
width: 50%;
}
table.header a {
color: white;
}
td.reference {
vertical-align: top;
white-space: nowrap;
padding-right: 1em;
}
thead {
display:table-header-group;
}
ul.toc, ul.toc ul {
list-style: none;
margin-left: 1.5em;
margin-right: 0em;
padding-left: 0em;
}
ul.toc li {
line-height: 150%;
font-weight: bold;
font-size: 10pt;
margin-left: 0em;
margin-right: 0em;
}
ul.toc li li {
line-height: normal;
font-weight: normal;
font-size: 9pt;
margin-left: 0em;
margin-right: 0em;
}
li.excluded {
font-size: 0pt;
}
ul p {
margin-left: 0em;
}
.comment {
background-color: yellow;
}
.center {
text-align: center;
}
.error {
color: red;
font-style: italic;
font-weight: bold;
}
.figure {
font-weight: bold;
text-align: center;
font-size: 9pt;
}
.filename {
color: #333333;
font-weight: bold;
font-size: 12pt;
line-height: 21pt;
text-align: center;
}
.fn {
font-weight: bold;
}
.hidden {
display: none;
}
.left {
text-align: left;
}
.right {
text-align: right;
}
.title {
color: #990000;
font-size: 18pt;
line-height: 18pt;
font-weight: bold;
text-align: center;
margin-top: 36pt;
}
.vcardline {
display: block;
}
.warning {
font-size: 14pt;
background-color: yellow;
}
@media print {
.noprint {
display: none;
}
a {
color: black;
text-decoration: none;
}
table.header {
width: 90%;
}
td.header {
width: 50%;
color: black;
background-color: white;
vertical-align: top;
font-size: 12pt;
}
ul.toc a::after {
content: leader('.') target-counter(attr(href), page);
}
ul.ind li li a {
content: target-counter(attr(href), page);
}
.print2col {
column-count: 2;
-moz-column-count: 2;
column-fill: auto;
}
}
@page {
@top-left {
content: "Internet-Draft";
}
@top-right {
content: "December 2010";
}
@top-center {
content: "Abbreviated Title";
}
@bottom-left {
content: "Doe";
}
@bottom-center {
content: "Expires June 2011";
}
@bottom-right {
content: "[Page " counter(page) "]";
}
}
@page:first {
@top-left {
content: normal;
}
@top-right {
content: normal;
}
@top-center {
content: normal;
}
}
/*]]>*/
</style>
<link href="#rfc.toc" rel="Contents"/>
<link href="#rfc.section.1" rel="Chapter" title="1 Introduction"/>
<link href="#rfc.section.2" rel="Chapter" title="2 Terminology"/>
<link href="#rfc.section.3" rel="Chapter" title="3 Metrics"/>
<link href="#rfc.section.3.1" rel="Chapter" title="3.1 RTP Log Format"/>
<link href="#rfc.section.4" rel="Chapter" title="4 List of Network Parameters"/>
<link href="#rfc.section.4.1" rel="Chapter" title="4.1 One-way Propagation Delay"/>
<link href="#rfc.section.4.2" rel="Chapter" title="4.2 End-to-end Loss"/>
<link href="#rfc.section.4.3" rel="Chapter" title="4.3 DropTail Router Queue Length"/>
<link href="#rfc.section.4.4" rel="Chapter" title="4.4 Loss generation model"/>
<link href="#rfc.section.4.5" rel="Chapter" title="4.5 Jitter models"/>
<link href="#rfc.section.4.5.1" rel="Chapter" title="4.5.1 Random Bounded PDV (RBPDV)"/>
<link href="#rfc.section.4.5.2" rel="Chapter" title="4.5.2 Approximately Random Subject to No-Reordering Bounded PDV (NR-RPVD)"/>
<link href="#rfc.section.5" rel="Chapter" title="5 WiFi or Cellular Links"/>
<link href="#rfc.section.6" rel="Chapter" title="6 Traffic Models"/>
<link href="#rfc.section.6.1" rel="Chapter" title="6.1 TCP taffic model"/>
<link href="#rfc.section.6.2" rel="Chapter" title="6.2 RTP Video model"/>
<link href="#rfc.section.6.3" rel="Chapter" title="6.3 Background UDP"/>
<link href="#rfc.section.7" rel="Chapter" title="7 Security Considerations"/>
<link href="#rfc.section.8" rel="Chapter" title="8 IANA Considerations"/>
<link href="#rfc.section.9" rel="Chapter" title="9 Contributors"/>
<link href="#rfc.section.10" rel="Chapter" title="10 Acknowledgements"/>
<link href="#rfc.references" rel="Chapter" title="11 References"/>
<link href="#rfc.references.1" rel="Chapter" title="11.1 Normative References"/>
<link href="#rfc.references.2" rel="Chapter" title="11.2 Informative References"/>
<link href="#rfc.appendix.A" rel="Chapter" title="A Application Trade-off"/>
<link href="#rfc.appendix.A.1" rel="Chapter" title="A.1 Measuring Quality"/>
<link href="#rfc.appendix.B" rel="Chapter" title="B Change Log"/>
<link href="#rfc.appendix.B.1" rel="Chapter" title="B.1 Changes in draft-ietf-rmcat-eval-criteria-05"/>
<link href="#rfc.appendix.B.2" rel="Chapter" title="B.2 Changes in draft-ietf-rmcat-eval-criteria-04"/>
<link href="#rfc.appendix.B.3" rel="Chapter" title="B.3 Changes in draft-ietf-rmcat-eval-criteria-03"/>
<link href="#rfc.appendix.B.4" rel="Chapter" title="B.4 Changes in draft-ietf-rmcat-eval-criteria-02"/>
<link href="#rfc.appendix.B.5" rel="Chapter" title="B.5 Changes in draft-ietf-rmcat-eval-criteria-01"/>
<link href="#rfc.appendix.B.6" rel="Chapter" title="B.6 Changes in draft-ietf-rmcat-eval-criteria-00"/>
<link href="#rfc.appendix.B.7" rel="Chapter" title="B.7 Changes in draft-singh-rmcat-cc-eval-04"/>
<link href="#rfc.appendix.B.8" rel="Chapter" title="B.8 Changes in draft-singh-rmcat-cc-eval-03"/>
<link href="#rfc.appendix.B.9" rel="Chapter" title="B.9 Changes in draft-singh-rmcat-cc-eval-02"/>
<link href="#rfc.appendix.B.10" rel="Chapter" title="B.10 Changes in draft-singh-rmcat-cc-eval-01"/>
<link href="#rfc.authors" rel="Chapter"/>
<meta name="generator" content="xml2rfc version 2.4.8 - http://tools.ietf.org/tools/xml2rfc" />
<link rel="schema.dct" href="http://purl.org/dc/terms/" />
<meta name="dct.creator" content="Singh, V., Ott, J., and S. Holmer" />
<meta name="dct.identifier" content="urn:ietf:id:draft-ietf-rmcat-eval-criteria-05" />
<meta name="dct.issued" scheme="ISO8601" content="2016-3-21" />
<meta name="dct.abstract" content="The Real-time Transport Protocol (RTP) is used to transmit media in telephony and video conferencing applications. This document describes the guidelines to evaluate new congestion control algorithms for interactive point-to-point real-time media." />
<meta name="description" content="The Real-time Transport Protocol (RTP) is used to transmit media in telephony and video conferencing applications. This document describes the guidelines to evaluate new congestion control algorithms for interactive point-to-point real-time media." />
</head>
<body>
<table class="header">
<tbody>
<tr>
<td class="left">RMCAT WG</td>
<td class="right">V. Singh</td>
</tr>
<tr>
<td class="left">Internet-Draft</td>
<td class="right">callstats.io</td>
</tr>
<tr>
<td class="left">Intended status: Informational</td>
<td class="right">J. Ott</td>
</tr>
<tr>
<td class="left">Expires: September 22, 2016</td>
<td class="right">Technical University of Munich</td>
</tr>
<tr>
<td class="left"></td>
<td class="right">S. Holmer</td>
</tr>
<tr>
<td class="left"></td>
<td class="right">Google</td>
</tr>
<tr>
<td class="left"></td>
<td class="right">March 21, 2016</td>
</tr>
</tbody>
</table>
<p class="title">Evaluating Congestion Control for Interactive Real-time Media <br />
<span class="filename">draft-ietf-rmcat-eval-criteria-05</span></p>
<h1 id="rfc.abstract">
<a href="#rfc.abstract">Abstract</a>
</h1>
<p>The Real-time Transport Protocol (RTP) is used to transmit media in telephony and video conferencing applications. This document describes the guidelines to evaluate new congestion control algorithms for interactive point-to-point real-time media.</p>
<h1 id="rfc.status">
<a href="#rfc.status">Status of This Memo</a>
</h1>
<p>This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.</p>
<p>Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.</p>
<p>Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."</p>
<p>This Internet-Draft will expire on September 22, 2016.</p>
<h1 id="rfc.copyrightnotice">
<a href="#rfc.copyrightnotice">Copyright Notice</a>
</h1>
<p>Copyright (c) 2016 IETF Trust and the persons identified as the document authors. All rights reserved.</p>
<p>This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.</p>
<hr class="noprint" />
<h1 class="np" id="rfc.toc"><a href="#rfc.toc">Table of Contents</a></h1>
<ul class="toc">
<li>1. <a href="#rfc.section.1">Introduction</a></li>
<li>2. <a href="#rfc.section.2">Terminology</a></li>
<li>3. <a href="#rfc.section.3">Metrics</a></li>
<li>3.1. <a href="#rfc.section.3.1">RTP Log Format</a></li>
<li>4. <a href="#rfc.section.4">List of Network Parameters</a></li>
<li>4.1. <a href="#rfc.section.4.1">One-way Propagation Delay</a></li>
<li>4.2. <a href="#rfc.section.4.2">End-to-end Loss</a></li>
<li>4.3. <a href="#rfc.section.4.3">DropTail Router Queue Length</a></li>
<li>4.4. <a href="#rfc.section.4.4">Loss generation model</a></li>
<li>4.5. <a href="#rfc.section.4.5">Jitter models</a></li>
<li>4.5.1. <a href="#rfc.section.4.5.1">Random Bounded PDV (RBPDV)</a></li>
<li>4.5.2. <a href="#rfc.section.4.5.2">Approximately Random Subject to No-Reordering Bounded PDV (NR-RPVD)</a></li>
<li>5. <a href="#rfc.section.5">WiFi or Cellular Links</a></li>
<li>6. <a href="#rfc.section.6">Traffic Models</a></li>
<li>6.1. <a href="#rfc.section.6.1">TCP taffic model</a></li>
<li>6.2. <a href="#rfc.section.6.2">RTP Video model</a></li>
<li>6.3. <a href="#rfc.section.6.3">Background UDP</a></li>
<li>7. <a href="#rfc.section.7">Security Considerations</a></li>
<li>8. <a href="#rfc.section.8">IANA Considerations</a></li>
<li>9. <a href="#rfc.section.9">Contributors</a></li>
<li>10. <a href="#rfc.section.10">Acknowledgements</a></li>
<li>11. <a href="#rfc.references">References</a></li>
<li>11.1. <a href="#rfc.references.1">Normative References</a></li>
<li>11.2. <a href="#rfc.references.2">Informative References</a></li>
<li>Appendix A. <a href="#rfc.appendix.A">Application Trade-off</a></li>
<li>A.1. <a href="#rfc.appendix.A.1">Measuring Quality</a></li>
<li>Appendix B. <a href="#rfc.appendix.B">Change Log</a></li>
<li>B.1. <a href="#rfc.appendix.B.1">Changes in draft-ietf-rmcat-eval-criteria-05</a></li>
<li>B.2. <a href="#rfc.appendix.B.2">Changes in draft-ietf-rmcat-eval-criteria-04</a></li>
<li>B.3. <a href="#rfc.appendix.B.3">Changes in draft-ietf-rmcat-eval-criteria-03</a></li>
<li>B.4. <a href="#rfc.appendix.B.4">Changes in draft-ietf-rmcat-eval-criteria-02</a></li>
<li>B.5. <a href="#rfc.appendix.B.5">Changes in draft-ietf-rmcat-eval-criteria-01</a></li>
<li>B.6. <a href="#rfc.appendix.B.6">Changes in draft-ietf-rmcat-eval-criteria-00</a></li>
<li>B.7. <a href="#rfc.appendix.B.7">Changes in draft-singh-rmcat-cc-eval-04</a></li>
<li>B.8. <a href="#rfc.appendix.B.8">Changes in draft-singh-rmcat-cc-eval-03</a></li>
<li>B.9. <a href="#rfc.appendix.B.9">Changes in draft-singh-rmcat-cc-eval-02</a></li>
<li>B.10. <a href="#rfc.appendix.B.10">Changes in draft-singh-rmcat-cc-eval-01</a></li>
<li><a href="#rfc.authors">Authors' Addresses</a></li>
</ul>
<h1 id="rfc.section.1"><a href="#rfc.section.1">1.</a> Introduction</h1>
<p id="rfc.section.1.p.1">This memo describes the guidelines to help with evaluating new congestion control algorithms for interactive point-to-point real time media. The requirements for the congestion control algorithm are outlined in <a href="#I-D.ietf-rmcat-cc-requirements">[I-D.ietf-rmcat-cc-requirements]</a>). This document builds upon previous work at the IETF: <a href="#RFC5033">Specifying New Congestion Control Algorithms</a> <cite title="NONE">[RFC5033]</cite> and <a href="#RFC5166">Metrics for the Evaluation of Congestion Control Algorithms</a> <cite title="NONE">[RFC5166]</cite>.</p>
<p id="rfc.section.1.p.2">The guidelines proposed in the document are intended to help prevent a congestion collapse, promote fair capacity usage and optimize the media flow's throughput. Furthermore, the proposed algorithms are expected to operate within the envelope of the circuit breakers defined in <a href="#I-D.ietf-avtcore-rtp-circuit-breakers">[I-D.ietf-avtcore-rtp-circuit-breakers]</a>.</p>
<p id="rfc.section.1.p.3">This document only provides broad-level criteria for evaluating a new congestion control algorithm. The minimal requirement for RMCAT proposals is to produce or present results for the test scenarios described in <a href="#I-D.ietf-rmcat-eval-test">[I-D.ietf-rmcat-eval-test]</a> (Basic Test Cases). Additionally, proponents may produce evaluation results for the <a href="#I-D.ietf-rmcat-wireless-tests">wireless test scenarios</a> <cite title="NONE">[I-D.ietf-rmcat-wireless-tests]</cite>. </p>
<h1 id="rfc.section.2"><a href="#rfc.section.2">2.</a> <a href="#sec-terminology" id="sec-terminology">Terminology</a></h1>
<p id="rfc.section.2.p.1">The terminology defined in <a href="#RFC3550">RTP</a> <cite title="NONE">[RFC3550]</cite>, <a href="#RFC3551">RTP Profile for Audio and Video Conferences with Minimal Control</a> <cite title="NONE">[RFC3551]</cite>, <a href="#RFC3611">RTCP Extended Report (XR)</a> <cite title="NONE">[RFC3611]</cite>, <a href="#RFC4585">Extended RTP Profile for RTCP-based Feedback (RTP/AVPF)</a> <cite title="NONE">[RFC4585]</cite> and <a href="#RFC5506">Support for Reduced-Size RTCP</a> <cite title="NONE">[RFC5506]</cite> apply.</p>
<h1 id="rfc.section.3"><a href="#rfc.section.3">3.</a> <a href="#cc-metrics" id="cc-metrics">Metrics</a></h1>
<p id="rfc.section.3.p.1">Each experiment is expected to log every incoming and outgoing packet (the RTP logging format is described in <a href="#rtp-logging">Section 3.1</a>). The logging can be done inside the application or at the endpoints using PCAP (packet capture, e.g., tcpdump, wireshark). The following are calculated based on the information in the packet logs: </p>
<ol>
<li>Sending rate, Receiver rate, Goodput (measured at 200ms intervals)</li>
<li>Packets sent, Packets received</li>
<li>Bytes sent, bytes received</li>
<li>Packet delay</li>
<li>Packets lost, Packets discarded (from the playout or de-jitter buffer)</li>
<li>If using, retransmission or FEC: post-repair loss</li>
<li>Fairness or Unfairness: Experiments testing the performance of an RMCAT proposal against any cross-traffic must define its expected criteria for fairness. The "unfairness" test guideline (measured at 1s intervals) is:<br/> 1. Does not trigger the circuit breaker.<br/> 2. No RMCAT stream achieves more than 3 times the average throughput of the RMCAT stream with the lowest average throughput, for a case when the competing streams have similar RTTs.<br/> 3. RTT should not grow by a factor of 3 for the existing flows when a new flow is added. <br/> For example, see the test scenarios described in <a href="#I-D.ietf-rmcat-eval-test">[I-D.ietf-rmcat-eval-test]</a>.</li>
<li>Convergence time: The time taken to reach a stable rate at startup, after the available link capacity changes, or when new flows get added to the bottleneck link.</li>
<li>Instability or oscillation in the sending rate: The frequency or number of instances when the sending rate oscillates between an high watermark level and a low watermark level, or vice-versa in a defined time window. For example, the watermarks can be set at 4x interval: 500 Kbps, 2 Mbps, and a time window of 500ms.</li>
<li>Bandwidth Utilization, defined as ratio of the instantaneous sending rate to the instantaneous bottleneck capacity. This metric is useful only when an RMCAT flow is by itself or competing with similar cross-traffic.</li>
</ol>
<p id="rfc.section.3.p.2">From the logs the statistical measures (min, max, mean, standard deviation and variance) for the whole duration or any specific part of the session can be calculated. Also the metrics (sending rate, receiver rate, goodput, latency) can be visualized in graphs as variation over time, the measurements in the plot are at 1 second intervals. Additionally, from the logs it is possible to plot the histogram or CDF of packet delay.</p>
<p id="rfc.section.3.p.3">[Open issue (1): Using Jain-fairness index (JFI) for measuring self-fairness between RTP flows? measured at what intervals? visualized as a CDF or a timeseries? Additionally: Use JFI for comparing fairness between RTP and long TCP flows? ]</p>
<p/>
<h1 id="rfc.section.3.1"><a href="#rfc.section.3.1">3.1.</a> <a href="#rtp-logging" id="rtp-logging">RTP Log Format</a></h1>
<p id="rfc.section.3.1.p.1">The log file is tab or comma separated containing the following details:</p>
<pre>
Send or receive timestamp (unix)
RTP payload type
SSRC
RTP sequence no
RTP timestamp
marker bit
payload size
</pre>
<p id="rfc.section.3.1.p.2">If the congestion control implements, retransmissions or FEC, the evaluation should report both packet loss (before applying error-resilience) and residual packet loss (after applying error-resilience).</p>
<h1 id="rfc.section.4"><a href="#rfc.section.4">4.</a> <a href="#add-params" id="add-params">List of Network Parameters</a></h1>
<p id="rfc.section.4.p.1">The implementors initially are encouraged to choose evaluation settings from the following values:</p>
<h1 id="rfc.section.4.1"><a href="#rfc.section.4.1">4.1.</a> <a href="#scen-delay" id="scen-delay">One-way Propagation Delay</a></h1>
<p id="rfc.section.4.1.p.1">Experiments are expected to verify that the congestion control is able to work in challenging situations, for example over trans-continental and/or satellite links. Typical values are: </p>
<ol>
<li>Very low latency: 0-1ms</li>
<li>Low latency: 50ms</li>
<li>High latency: 150ms</li>
<li>Extreme latency: 300ms</li>
</ol>
<h1 id="rfc.section.4.2"><a href="#rfc.section.4.2">4.2.</a> <a href="#scen-loss" id="scen-loss">End-to-end Loss</a></h1>
<p id="rfc.section.4.2.p.1">To model lossy links, the experiments can choose one of the following loss rates, the fractional loss is the ratio of packets lost and packets sent. </p>
<ol>
<li>no loss: 0%</li>
<li>1%</li>
<li>5%</li>
<li>10%</li>
<li>20%</li>
</ol>
<h1 id="rfc.section.4.3"><a href="#rfc.section.4.3">4.3.</a> <a href="#scen-queue" id="scen-queue">DropTail Router Queue Length</a></h1>
<p id="rfc.section.4.3.p.1">The router queue length is measured as the time taken to drain the FIFO queue. It has been noted in various discussions that the queue length in the current deployed Internet varies significantly. While the core backbone network has very short queue length, the home gateways usually have larger queue length. Those various queue lengths can be categorized in the following way: </p>
<ol>
<li>QoS-aware (or short): 70ms</li>
<li>Nominal: 300-500ms</li>
<li>Buffer-bloated: 1000-2000ms</li>
</ol>
<p> Here the size of the queue is measured in bytes or packets and to convert the queue length measured in seconds to queue length in bytes:</p>
<p id="rfc.section.4.3.p.2">QueueSize (in bytes) = QueueSize (in sec) x Throughput (in bps)/8</p>
<h1 id="rfc.section.4.4"><a href="#rfc.section.4.4">4.4.</a> Loss generation model</h1>
<p id="rfc.section.4.4.p.1">[Open Issue: Describes the model for generating packet losses, for example, losses can be generated using traces, or using the Gilbert-Elliot model, or randomly (uncorrelated loss).]</p>
<h1 id="rfc.section.4.5"><a href="#rfc.section.4.5">4.5.</a> <a href="#JM" id="JM">Jitter models</a></h1>
<p id="rfc.section.4.5.p.1">This section defines jitter model for the purposes of this document. When jitter is to be applied to both the RMCAT flow and any competing flow (such as a TCP competing flow), the competing flow will use the jitter definition below that does not allow for re-ordering of packets on the competing flow (see NR-RBPDV definition below).</p>
<p id="rfc.section.4.5.p.2">Jitter is an overloaded term in communications. Its meaning is typically associated with the variation of a metric (e.g., delay) with respect to some reference metric (e.g., average delay or minimum delay). For example, RFC 3550 jitter is a smoothed estimate of jitter which is particularly meaningful if the underlying packet delay variation was caused by a Gaussian random process.</p>
<p id="rfc.section.4.5.p.3">Because jitter is an overloaded term, we instead use the term Packet Delay Variation (PDV) to describe the variation of delay of individual packets in the same sense as the IETF IPPM WG has defined PDV in their documents (e.g., RFC 3393) and as the ITU-T SG16 has defined IP Packet Delay Variation (IPDV) in their documents (e.g., Y.1540).</p>
<p id="rfc.section.4.5.p.4">Most PDV distributions in packet network systems are one-sided distributions (the measurement of which with a finite number of measurement samples result in one-sided histograms). In the usual packet network transport case there is typically one packet that transited the network with the minimum delay, then a majority of packets also transit the system within some variation from this minimum delay, and then a minority of the packets transits the network with delays higher than the median or average transit time (these are outliers). Although infrequent, outliers can cause significant deleterious operation in adaptive systems and should be considered in RMCAT adaptation designs.</p>
<p id="rfc.section.4.5.p.5">In this section we define two different bounded PDV characteristics, 1) Random Bounded PDV and 2) Approximately Random Subject to No-Reordering Bounded PDV.</p>
<p id="rfc.section.4.5.p.6">[Open issue: which one is used in evaluations? Are both used?]</p>
<h1 id="rfc.section.4.5.1"><a href="#rfc.section.4.5.1">4.5.1.</a> Random Bounded PDV (RBPDV)</h1>
<p id="rfc.section.4.5.1.p.1">The RBPDV probability distribution function (pdf) is specified to be of some mathematically describable function which includes some practical minimum and maximum discrete values suitable for testing. For example, the minimum value, x_min, might be specified as the minimum transit time packet and the maximum value, x_max, might be idefined to be two standard deviations higher than the mean.</p>
<p id="rfc.section.4.5.1.p.2">Since we are typically interested in the distribution relative to the mean delay packet, we define the zero mean PVD sample, z(n), to be z(n) = x(n) - x_mean, where x(n) is a sample of the RBPDV random variable x and x_mean is the mean of x.</p>
<p id="rfc.section.4.5.1.p.3">We assume here that s(n) is the original source time of packet n and the post-jitter induced emmission time, j(n), for packet n is j(n) = {[z(n) + x_mean] + s(n)}. It follows that the separation in the post-jitter time of packets n and n+1 is {[s(n+1)-s(n)] - [z(n)-z(n+1)]}. Since the first term is always a positive quantity, we note that packet reordering at the receiver is possible whenever the second term is greater than the first. Said another way, whenever the difference in possible zero mean PDV sample delays (i.e., [x_max-x_min]) exceeds the inter-departure time of any two sent packets, we have the possibility of packet re-ordering.</p>
<p id="rfc.section.4.5.1.p.4">There are important use cases in real networks where packets can become re-ordered such as in load balancing topologies and during route changes. However, for the vast majority of cases there is no packet re-ordering because most of the time packets follow the same path. Due to this, if a packet becomes overly delayed, the packets after it on that flow are also delayed. This is especially true for mobile wireless links where there are per-flow queues prior to base station scheduling. Owing to this important use case, we define another PDV profile similar to the above, but one that does not allow for re-ordering within a flow.</p>
<h1 id="rfc.section.4.5.2"><a href="#rfc.section.4.5.2">4.5.2.</a> Approximately Random Subject to No-Reordering Bounded PDV (NR-RPVD)</h1>
<p id="rfc.section.4.5.2.p.1">No Reordering RPDV, NR-RPVD, is defined similarly to the above with one important exception. Let serial(n) be defined as the serialization delay of packet n at the lowest bottleneck link rate (or other appropriate rate) in a given test. Then we produce all the post-jitter values for j(n) for n = 1, 2, ... N, where N is the length of the source sequence s to be offset-ed. The exception can be stated as follows: We revisit all j(n) beginning from index n=2, and if j(n) is determined to be less than [j(n-1)+serial(n-1)], we redefine j(n) to be equal to [j(n-1)+serial(n-1)] and continue for all remaining n (i.e., n = 3, 4, .. N). This models the case where the packet n is sent immediately after packet (n-1) at the bottleneck link rate. Although this is generally the theoretical minimum in that it assumes that no other packets from other flows are in-between packet n and n+1 at the bottleneck link, it is a reasonable assumption for per flow queuing.</p>
<p id="rfc.section.4.5.2.p.2">We note that this assumption holds for some important exception cases, such as packets immediately following outliers. There are a multitude of software controlled elements common on end-to-end Internet paths (such as firewalls, ALGs and other middleboxes) which stop processing packets while servicing other functions (e.g., garbage collection). Often these devices do not drop packets, but rather queue them for later processing and cause many of the outliers. Thus NR-RPVD models this particular use case (assuming serial(n+1) is defined appropriately for the device causing the outlier) and thus is believed to be important for adaptation development for RMCAT.</p>
<p id="rfc.section.4.5.2.p.3">[Editor's Note: It may require to define test distributions as well. Example test distribution may include-</p>
<p id="rfc.section.4.5.2.p.4">1 - Two-sided: Uniform PDV Distribution. Two quantities to define: x_min and x_max.</p>
<p id="rfc.section.4.5.2.p.5">2 - Two-sided: Truncated Gaussian PDV Distribution. Four quantities to define: the appropriate x_min and x_max for test (e.g., +/- two sigma values), the standard deviation, and the mean.</p>
<p id="rfc.section.4.5.2.p.6">3 - One Sided: Truncated Gaussian PDV Distribution. Quantities to define: three sigma value, the standard deviation, and the mean]</p>
<h1 id="rfc.section.5"><a href="#rfc.section.5">5.</a> WiFi or Cellular Links</h1>
<p><a href="#I-D.ietf-rmcat-wireless-tests">[I-D.ietf-rmcat-wireless-tests]</a> describes the test cases to simulate networks with wireless links. The document describes mechanism to simulate both cellular and WiFi networks. </p>
<h1 id="rfc.section.6"><a href="#rfc.section.6">6.</a> <a href="#app-additional" id="app-additional">Traffic Models</a></h1>
<h1 id="rfc.section.6.1"><a href="#rfc.section.6.1">6.1.</a> TCP taffic model</h1>
<p id="rfc.section.6.1.p.1">Long-lived TCP flows will download data throughout the session and are expected to have infinite amount of data to send or receive. For example, to </p>
<p id="rfc.section.6.1.p.2">Each short TCP flow is modeled as a sequence of file downloads interleaved with idle periods. Not all short TCPs start at the same time, i.e., some start in the ON state while others start in the OFF state.</p>
<p id="rfc.section.6.1.p.3">The short TCP flows can be modelled as follows: 30 connections start simultaneously fetching small (30-50 KB) amounts of data. This covers the case where the short TCP flows are not fetching a video file.</p>
<p id="rfc.section.6.1.p.4">The idle period between bursts of starting a group of TCP flows is typically derived from an exponential distribution with the mean value of 10 seconds.</p>
<p id="rfc.section.6.1.p.5">[These values were picked based on the data available at http://httparchive.org/interesting.php as of October 2015].</p>
<h1 id="rfc.section.6.2"><a href="#rfc.section.6.2">6.2.</a> RTP Video model</h1>
<p><a href="#I-D.ietf-rmcat-video-traffic-model">[I-D.ietf-rmcat-video-traffic-model]</a> describes two types of video traffic models for evaluating RMCAT candidate algorithms. The first model statistically characterizes the behavior of a video encoder. Whereas the second model uses video traces. </p>
<p id="rfc.section.6.2.p.2">For example, test sequences are available at: <a href="#xiph-seq">[xiph-seq]</a> and <a href="#HEVC-seq">[HEVC-seq]</a>. </p>
<p id="rfc.section.6.2.p.3">[Open issue: Which sequences are used? All? Some subset?]</p>
<h1 id="rfc.section.6.3"><a href="#rfc.section.6.3">6.3.</a> Background UDP</h1>
<p id="rfc.section.6.3.p.1">[Open issue: Background UDP flow is modeled as a constant bit rate (CBR) flow. It will download data at a particular CBR rate for the complete session, or will change to particular CBR rate at predefined intervals. They parameters are still TBD. e.g., packet size, packet spacing interval, etc.] </p>
<h1 id="rfc.section.7"><a href="#rfc.section.7">7.</a> Security Considerations</h1>
<p id="rfc.section.7.p.1">Security issues have not been discussed in this memo.</p>
<h1 id="rfc.section.8"><a href="#rfc.section.8">8.</a> IANA Considerations</h1>
<p id="rfc.section.8.p.1">There are no IANA impacts in this memo.</p>
<h1 id="rfc.section.9"><a href="#rfc.section.9">9.</a> <a href="#contrib" id="contrib">Contributors</a></h1>
<p id="rfc.section.9.p.1">The content and concepts within this document are a product of the discussion carried out in the Design Team.</p>
<p id="rfc.section.9.p.2">Michael Ramalho provided the text for the Jitter model.</p>
<h1 id="rfc.section.10"><a href="#rfc.section.10">10.</a> Acknowledgements</h1>
<p id="rfc.section.10.p.1">Much of this document is derived from previous work on congestion control at the IETF.</p>
<p id="rfc.section.10.p.2">The authors would like to thank Harald Alvestrand, Anna Brunstrom, Luca De Cicco, Wesley Eddy, Lars Eggert, Kevin Gross, Vinayak Hegde, Stefan Holmer, Randell Jesup, Mirja Kuehlewind, Karen Nielsen, Piers O'Hanlon, Colin Perkins, Michael Ramalho, Zaheduzzaman Sarker, Timothy B. Terriberry, Michael Welzl, and Mo Zanaty for providing valuable feedback on earlier versions of this draft. Additionally, also thank the participants of the design team for their comments and discussion related to the evaluation criteria.</p>
<h1 id="rfc.references"><a href="#rfc.references">11.</a> References</h1>
<h1 id="rfc.references.1"><a href="#rfc.references.1">11.1.</a> Normative References</h1>
<table>
<tbody>
<tr>
<td class="reference">
<b id="RFC3550">[RFC3550]</b>
</td>
<td class="top"><a>Schulzrinne, H.</a>, <a>Casner, S.</a>, <a>Frederick, R.</a> and <a>V. Jacobson</a>, "<a href="http://tools.ietf.org/html/rfc3550">RTP: A Transport Protocol for Real-Time Applications</a>", STD 64, RFC 3550, DOI 10.17487/RFC3550, July 2003.</td>
</tr>
<tr>
<td class="reference">
<b id="RFC3551">[RFC3551]</b>
</td>
<td class="top"><a>Schulzrinne, H.</a> and <a>S. Casner</a>, "<a href="http://tools.ietf.org/html/rfc3551">RTP Profile for Audio and Video Conferences with Minimal Control</a>", STD 65, RFC 3551, DOI 10.17487/RFC3551, July 2003.</td>
</tr>
<tr>
<td class="reference">
<b id="RFC3611">[RFC3611]</b>
</td>
<td class="top"><a>Friedman, T.</a>, <a>Caceres, R.</a> and <a>A. Clark</a>, "<a href="http://tools.ietf.org/html/rfc3611">RTP Control Protocol Extended Reports (RTCP XR)</a>", RFC 3611, DOI 10.17487/RFC3611, November 2003.</td>
</tr>
<tr>
<td class="reference">
<b id="RFC4585">[RFC4585]</b>
</td>
<td class="top"><a>Ott, J.</a>, <a>Wenger, S.</a>, <a>Sato, N.</a>, <a>Burmeister, C.</a> and <a>J. Rey</a>, "<a href="http://tools.ietf.org/html/rfc4585">Extended RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/AVPF)</a>", RFC 4585, DOI 10.17487/RFC4585, July 2006.</td>
</tr>
<tr>
<td class="reference">
<b id="RFC5506">[RFC5506]</b>
</td>
<td class="top"><a>Johansson, I.</a> and <a>M. Westerlund</a>, "<a href="http://tools.ietf.org/html/rfc5506">Support for Reduced-Size Real-Time Transport Control Protocol (RTCP): Opportunities and Consequences</a>", RFC 5506, DOI 10.17487/RFC5506, April 2009.</td>
</tr>
<tr>
<td class="reference">
<b id="I-D.ietf-rmcat-cc-requirements">[I-D.ietf-rmcat-cc-requirements]</b>
</td>
<td class="top"><a>Jesup, R.</a> and <a>Z. Sarker</a>, "<a href="http://tools.ietf.org/html/draft-ietf-rmcat-cc-requirements-09">Congestion Control Requirements for Interactive Real-Time Media</a>", Internet-Draft draft-ietf-rmcat-cc-requirements-09, December 2014.</td>
</tr>
<tr>
<td class="reference">
<b id="I-D.ietf-avtcore-rtp-circuit-breakers">[I-D.ietf-avtcore-rtp-circuit-breakers]</b>
</td>
<td class="top"><a>Perkins, C.</a> and <a>V. Varun</a>, "<a href="http://tools.ietf.org/html/draft-ietf-avtcore-rtp-circuit-breakers-14">Multimedia Congestion Control: Circuit Breakers for Unicast RTP Sessions</a>", Internet-Draft draft-ietf-avtcore-rtp-circuit-breakers-14, March 2016.</td>
</tr>
<tr>
<td class="reference">
<b id="I-D.ietf-rmcat-wireless-tests">[I-D.ietf-rmcat-wireless-tests]</b>
</td>
<td class="top"><a>Sarker, Z.</a>, <a>Johansson, I.</a>, <a>Zhu, X.</a>, <a>Fu, J.</a>, <a>Tan, W.</a> and <a>M. Ramalho</a>, "<a href="http://tools.ietf.org/html/draft-ietf-rmcat-wireless-tests-01">Evaluation Test Cases for Interactive Real-Time Media over Wireless Networks</a>", Internet-Draft draft-ietf-rmcat-wireless-tests-01, November 2015.</td>
</tr>
</tbody>
</table>
<h1 id="rfc.references.2"><a href="#rfc.references.2">11.2.</a> Informative References</h1>
<table>
<tbody>
<tr>
<td class="reference">
<b id="RFC5033">[RFC5033]</b>
</td>
<td class="top"><a>Floyd, S.</a> and <a>M. Allman</a>, "<a href="http://tools.ietf.org/html/rfc5033">Specifying New Congestion Control Algorithms</a>", BCP 133, RFC 5033, DOI 10.17487/RFC5033, August 2007.</td>
</tr>
<tr>
<td class="reference">
<b id="RFC5166">[RFC5166]</b>
</td>
<td class="top"><a>Floyd, S.</a>, "<a href="http://tools.ietf.org/html/rfc5166">Metrics for the Evaluation of Congestion Control Mechanisms</a>", RFC 5166, DOI 10.17487/RFC5166, March 2008.</td>
</tr>
<tr>
<td class="reference">
<b id="RFC5681">[RFC5681]</b>
</td>
<td class="top"><a>Allman, M.</a>, <a>Paxson, V.</a> and <a>E. Blanton</a>, "<a href="http://tools.ietf.org/html/rfc5681">TCP Congestion Control</a>", RFC 5681, DOI 10.17487/RFC5681, September 2009.</td>
</tr>
<tr>
<td class="reference">
<b id="I-D.ietf-rmcat-eval-test">[I-D.ietf-rmcat-eval-test]</b>
</td>
<td class="top"><a>Sarker, Z.</a>, <a>Varun, V.</a>, <a>Zhu, X.</a> and <a>M. Ramalho</a>, "<a href="http://tools.ietf.org/html/draft-ietf-rmcat-eval-test-03">Test Cases for Evaluating RMCAT Proposals</a>", Internet-Draft draft-ietf-rmcat-eval-test-03, March 2016.</td>
</tr>
<tr>
<td class="reference">
<b id="I-D.ietf-rmcat-video-traffic-model">[I-D.ietf-rmcat-video-traffic-model]</b>
</td>
<td class="top"><a>Zhu, X.</a>, <a>Cruz, S.</a> and <a>Z. Sarker</a>, "<a href="http://tools.ietf.org/html/draft-ietf-rmcat-video-traffic-model-00">Modeling Video Traffic Sources for RMCAT Evaluations</a>", Internet-Draft draft-ietf-rmcat-video-traffic-model-00, January 2016.</td>
</tr>
<tr>
<td class="reference">
<b id="SA4-EVAL">[SA4-EVAL]</b>
</td>
<td class="top"><a>R1-081955, 3GPP.</a>, "<a>LTE Link Level Throughput Data for SA4 Evaluation Framework</a>", 3GPP R1-081955, 5 2008.</td>
</tr>
<tr>
<td class="reference">
<b id="SA4-LR">[SA4-LR]</b>
</td>
<td class="top"><a>S4-050560, 3GPP.</a>, "<a>Error Patterns for MBMS Streaming over UTRAN and GERAN</a>", 3GPP S4-050560, 5 2008.</td>
</tr>
<tr>
<td class="reference">
<b id="TCP-eval-suite">[TCP-eval-suite]</b>
</td>
<td class="top"><a>Lachlan, A.</a>, <a>Marcondes, C.</a>, <a>Floyd, S.</a>, <a>Dunn, L.</a>, <a>Guillier, R.</a>, <a>Gang, W.</a>, <a>Eggert, L.</a>, <a>Ha, S.</a> and <a>I. Rhee</a>, "<a>Towards a Common TCP Evaluation Suite</a>", Proc. PFLDnet. 2008, August 2008.</td>
</tr>
<tr>
<td class="reference">
<b id="xiph-seq">[xiph-seq]</b>
</td>
<td class="top"><a>Xiph.org, </a>, "<a>Video Test Media</a>", http://media.xiph.org/video/derf/ , .</td>
</tr>
<tr>
<td class="reference">
<b id="HEVC-seq">[HEVC-seq]</b>
</td>
<td class="top"><a>HEVC, </a>, "<a>Test Sequences</a>", http://www.netlab.tkk.fi/~varun/test_sequences/ , .</td>
</tr>
</tbody>
</table>
<h1 id="rfc.appendix.A"><a href="#rfc.appendix.A">Appendix A.</a> <a href="#misc" id="misc">Application Trade-off</a></h1>
<p id="rfc.section.A.p.1">Application trade-off is yet to be defined. see <a href="#I-D.ietf-rmcat-cc-requirements">RMCAT requirements</a> <cite title="NONE">[I-D.ietf-rmcat-cc-requirements]</cite> document. Perhaps each experiment should define the application's expectation or trade-off.</p>
<h1 id="rfc.appendix.A.1"><a href="#rfc.appendix.A.1">A.1.</a> <a href="#misc-2" id="misc-2">Measuring Quality</a></h1>
<p id="rfc.section.A.1.p.1">No quality metric is defined for performance evaluation, it is currently an open issue. However, there is consensus that congestion control algorithm should be able to show that it is useful for interactive video by performing analysis using a real codec and video sequences. </p>
<h1 id="rfc.appendix.B"><a href="#rfc.appendix.B">Appendix B.</a> <a href="#App-cl" id="App-cl">Change Log</a></h1>
<p id="rfc.section.B.p.1">Note to the RFC-Editor: please remove this section prior to publication as an RFC.</p>
<h1 id="rfc.appendix.B.1"><a href="#rfc.appendix.B.1">B.1.</a> Changes in draft-ietf-rmcat-eval-criteria-05</h1>
<p/>
<ul>
<li>Improved text surrounding wireless tests, video sequences, and short-TCP model.</li>
</ul>
<h1 id="rfc.appendix.B.2"><a href="#rfc.appendix.B.2">B.2.</a> Changes in draft-ietf-rmcat-eval-criteria-04</h1>
<p/>
<ul>
<li>Removed the guidelines section, as most of the sections are now covered: wireless tests, video model, etc.</li>
<li>Improved Short TCP model based on the suggestion to use httparchive.org.</li>
</ul>
<h1 id="rfc.appendix.B.3"><a href="#rfc.appendix.B.3">B.3.</a> Changes in draft-ietf-rmcat-eval-criteria-03</h1>
<p/>
<ul>
<li>Keep-alive version.</li>
<li>Moved link parameters and traffic models from eval-test</li>
</ul>
<h1 id="rfc.appendix.B.4"><a href="#rfc.appendix.B.4">B.4.</a> Changes in draft-ietf-rmcat-eval-criteria-02</h1>
<p/>
<ul>
<li>Incorporated fairness test as a working test.</li>
<li>Updated text on mimimum evaluation requirements.</li>
</ul>
<h1 id="rfc.appendix.B.5"><a href="#rfc.appendix.B.5">B.5.</a> Changes in draft-ietf-rmcat-eval-criteria-01</h1>
<p/>
<ul>
<li>Removed Appendix B.</li>
<li>Removed Section on Evaluation Parameters.</li>
</ul>
<h1 id="rfc.appendix.B.6"><a href="#rfc.appendix.B.6">B.6.</a> Changes in draft-ietf-rmcat-eval-criteria-00</h1>
<p/>
<ul>
<li>Updated references.</li>
<li>Resubmitted as WG draft.</li>
</ul>
<h1 id="rfc.appendix.B.7"><a href="#rfc.appendix.B.7">B.7.</a> Changes in draft-singh-rmcat-cc-eval-04</h1>
<p/>
<ul>
<li>Incorporate feedback from IETF 87, Berlin.</li>
<li>Clarified metrics: convergence time, bandwidth utilization.</li>
<li>Changed fairness criteria to fairness test.</li>
<li>Added measuring pre- and post-repair loss.</li>
<li>Added open issue of measuring video quality to appendix.</li>
<li>clarified use of DropTail and AQM.</li>
<li>Updated text in "Minimum Requirements for Evaluation"</li>
</ul>
<h1 id="rfc.appendix.B.8"><a href="#rfc.appendix.B.8">B.8.</a> Changes in draft-singh-rmcat-cc-eval-03</h1>
<p/>
<ul>
<li>Incorporate the discussion within the design team.</li>
<li>Added a section on evaluation parameters, it describes the flow and network characteristics.</li>
<li>Added Appendix with self-fairness experiment.</li>
<li>Changed bottleneck parameters from a proposal to an example set.</li>
<li/>
</ul>
<h1 id="rfc.appendix.B.9"><a href="#rfc.appendix.B.9">B.9.</a> Changes in draft-singh-rmcat-cc-eval-02</h1>
<p/>
<ul>
<li>Added scenario descriptions.</li>
</ul>
<h1 id="rfc.appendix.B.10"><a href="#rfc.appendix.B.10">B.10.</a> Changes in draft-singh-rmcat-cc-eval-01</h1>
<p/>
<ul>
<li>Removed QoE metrics.</li>
<li>Changed stability to steady-state.</li>
<li>Added measuring impact against few and many flows.</li>
<li>Added guideline for idle and data-limited periods.</li>
<li>Added reference to TCP evaluation suite in example evaluation scenarios.</li>
</ul>
<h1 id="rfc.authors">
<a href="#rfc.authors">Authors' Addresses</a>
</h1>
<div class="avoidbreak">
<address class="vcard">
<span class="vcardline">
<span class="fn">Varun Singh</span>
<span class="n hidden">
<span class="family-name">Singh</span>
</span>
</span>
<span class="org vcardline">Nemu Dialogue Systems Oy</span>
<span class="adr">
<span class="vcardline">Runeberginkatu 4c A 4 </span>
<span class="vcardline">
<span class="locality">Helsinki</span>,
<span class="region"></span>
<span class="code">00100</span>
</span>
<span class="country-name vcardline">Finland</span>
</span>
<span class="vcardline">EMail: <a href="mailto:varun.singh@iki.fi">varun.singh@iki.fi</a></span>
<span class="vcardline">URI: <a href="http://www.callstats.io/">http://www.callstats.io/</a></span>
</address>
</div><div class="avoidbreak">
<address class="vcard">
<span class="vcardline">
<span class="fn">Joerg Ott</span>
<span class="n hidden">
<span class="family-name">Ott</span>
</span>
</span>
<span class="org vcardline">Technical University of Munich</span>
<span class="adr">
<span class="vcardline">Faculty of Informatics</span>
<span class="vcardline">Boltzmannstrasse 3</span>
<span class="vcardline">
<span class="locality">Garching bei München</span>,
<span class="region">DE</span>
<span class="code">85748</span>
</span>
<span class="country-name vcardline">Germany</span>
</span>
<span class="vcardline">EMail: <a href="mailto:ott@in.tum.de">ott@in.tum.de</a></span>
</address>
</div><div class="avoidbreak">
<address class="vcard">
<span class="vcardline">
<span class="fn">Stefan Holmer</span>
<span class="n hidden">
<span class="family-name">Holmer</span>
</span>
</span>
<span class="org vcardline">Google</span>
<span class="adr">
<span class="vcardline">Kungsbron 2</span>
<span class="vcardline">
<span class="locality">Stockholm</span>,
<span class="region"></span>
<span class="code">11122</span>
</span>
<span class="country-name vcardline">Sweden</span>
</span>
<span class="vcardline">EMail: <a href="mailto:holmer@google.com">holmer@google.com</a></span>
</address>
</div>
</body>
</html>