-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdraft-singh-rmcat-cc-eval-04.html
948 lines (890 loc) · 56.3 KB
/
draft-singh-rmcat-cc-eval-04.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html lang="en" xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head profile="http://www.w3.org/2006/03/hcard http://dublincore.org/documents/2008/08/04/dc-html/">
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii" />
<title>Evaluating Congestion Control for Interactive Real-time Media </title>
<style type="text/css" title="Xml2Rfc (sans serif)">
/*<![CDATA[*/
a {
text-decoration: none;
}
a.smpl {
color: black;
}
a:hover {
text-decoration: underline;
}
a:active {
text-decoration: underline;
}
address {
margin-top: 1em;
margin-left: 2em;
font-style: normal;
}
body {
color: black;
font-family: verdana, helvetica, arial, sans-serif;
font-size: 10pt;
max-width: 55em;
}
cite {
font-style: normal;
}
dd {
margin-right: 2em;
}
dl {
margin-left: 2em;
}
ul.empty {
list-style-type: none;
}
ul.empty li {
margin-top: .5em;
}
dl p {
margin-left: 0em;
}
dt {
margin-top: .5em;
}
h1 {
font-size: 14pt;
line-height: 21pt;
page-break-after: avoid;
}
h1.np {
page-break-before: always;
}
h1 a {
color: #333333;
}
h2 {
font-size: 12pt;
line-height: 15pt;
page-break-after: avoid;
}
h3, h4, h5, h6 {
font-size: 10pt;
page-break-after: avoid;
}
h2 a, h3 a, h4 a, h5 a, h6 a {
color: black;
}
img {
margin-left: 3em;
}
li {
margin-left: 2em;
margin-right: 2em;
}
ol {
margin-left: 2em;
margin-right: 2em;
}
ol p {
margin-left: 0em;
}
p {
margin-left: 2em;
margin-right: 2em;
}
pre {
margin-left: 3em;
background-color: lightyellow;
padding: .25em;
}
pre.text2 {
border-style: dotted;
border-width: 1px;
background-color: #f0f0f0;
width: 69em;
}
pre.inline {
background-color: white;
padding: 0em;
}
pre.text {
border-style: dotted;
border-width: 1px;
background-color: #f8f8f8;
width: 69em;
}
pre.drawing {
border-style: solid;
border-width: 1px;
background-color: #f8f8f8;
padding: 2em;
}
table {
margin-left: 2em;
}
table.tt {
vertical-align: top;
}
table.full {
border-style: outset;
border-width: 1px;
}
table.headers {
border-style: outset;
border-width: 1px;
}
table.tt td {
vertical-align: top;
}
table.full td {
border-style: inset;
border-width: 1px;
}
table.tt th {
vertical-align: top;
}
table.full th {
border-style: inset;
border-width: 1px;
}
table.headers th {
border-style: none none inset none;
border-width: 1px;
}
table.left {
margin-right: auto;
}
table.right {
margin-left: auto;
}
table.center {
margin-left: auto;
margin-right: auto;
}
caption {
caption-side: bottom;
font-weight: bold;
font-size: 9pt;
margin-top: .5em;
}
table.header {
border-spacing: 1px;
width: 95%;
font-size: 10pt;
color: white;
}
td.top {
vertical-align: top;
}
td.topnowrap {
vertical-align: top;
white-space: nowrap;
}
table.header td {
background-color: gray;
width: 50%;
}
table.header a {
color: white;
}
td.reference {
vertical-align: top;
white-space: nowrap;
padding-right: 1em;
}
thead {
display:table-header-group;
}
ul.toc, ul.toc ul {
list-style: none;
margin-left: 1.5em;
margin-right: 0em;
padding-left: 0em;
}
ul.toc li {
line-height: 150%;
font-weight: bold;
font-size: 10pt;
margin-left: 0em;
margin-right: 0em;
}
ul.toc li li {
line-height: normal;
font-weight: normal;
font-size: 9pt;
margin-left: 0em;
margin-right: 0em;
}
li.excluded {
font-size: 0pt;
}
ul p {
margin-left: 0em;
}
.comment {
background-color: yellow;
}
.center {
text-align: center;
}
.error {
color: red;
font-style: italic;
font-weight: bold;
}
.figure {
font-weight: bold;
text-align: center;
font-size: 9pt;
}
.filename {
color: #333333;
font-weight: bold;
font-size: 12pt;
line-height: 21pt;
text-align: center;
}
.fn {
font-weight: bold;
}
.hidden {
display: none;
}
.left {
text-align: left;
}
.right {
text-align: right;
}
.title {
color: #990000;
font-size: 18pt;
line-height: 18pt;
font-weight: bold;
text-align: center;
margin-top: 36pt;
}
.vcardline {
display: block;
}
.warning {
font-size: 14pt;
background-color: yellow;
}
@media print {
.noprint {
display: none;
}
a {
color: black;
text-decoration: none;
}
table.header {
width: 90%;
}
td.header {
width: 50%;
color: black;
background-color: white;
vertical-align: top;
font-size: 12pt;
}
ul.toc a::after {
content: leader('.') target-counter(attr(href), page);
}
ul.ind li li a {
content: target-counter(attr(href), page);
}
.print2col {
column-count: 2;
-moz-column-count: 2;
column-fill: auto;
}
}
@page {
@top-left {
content: "Internet-Draft";
}
@top-right {
content: "December 2010";
}
@top-center {
content: "Abbreviated Title";3
}
@bottom-left {
content: "Doe";
}
@bottom-center {
content: "Expires June 2011";
}
@bottom-right {
content: "[Page " counter(page) "]";
}
}
@page:first {
@top-left {
content: normal;
}
@top-right {
content: normal;
}
@top-center {
content: normal;
}
}
/*]]>*/
</style>
<link href="#rfc.toc" rel="Contents"/>
<link href="#rfc.section.1" rel="Chapter" title="1 Introduction"/>
<link href="#rfc.section.2" rel="Chapter" title="2 Terminology"/>
<link href="#rfc.section.3" rel="Chapter" title="3 Metrics"/>
<link href="#rfc.section.3.1" rel="Chapter" title="3.1 RTP Log Format"/>
<link href="#rfc.section.4" rel="Chapter" title="4 Guidelines"/>
<link href="#rfc.section.4.1" rel="Chapter" title="4.1 Avoiding Congestion Collapse"/>
<link href="#rfc.section.4.2" rel="Chapter" title="4.2 Stability"/>
<link href="#rfc.section.4.3" rel="Chapter" title="4.3 Media Traffic"/>
<link href="#rfc.section.4.4" rel="Chapter" title="4.4 Start-up Behaviour"/>
<link href="#rfc.section.4.5" rel="Chapter" title="4.5 Diverse Environments"/>
<link href="#rfc.section.4.6" rel="Chapter" title="4.6 Varying Path Characteristics"/>
<link href="#rfc.section.4.7" rel="Chapter" title="4.7 Reacting to Transient Events or Interruptions"/>
<link href="#rfc.section.4.8" rel="Chapter" title="4.8 Fairness With Similar Cross-Traffic"/>
<link href="#rfc.section.4.9" rel="Chapter" title="4.9 Impact on Cross-Traffic"/>
<link href="#rfc.section.4.10" rel="Chapter" title="4.10 Extensions to RTP/RTCP"/>
<link href="#rfc.section.5" rel="Chapter" title="5 Minimum Requirements for Evaluation"/>
<link href="#rfc.section.6" rel="Chapter" title="6 Evaluation Parameters"/>
<link href="#rfc.section.6.1" rel="Chapter" title="6.1 Bottleneck Traffic Flows"/>
<link href="#rfc.section.6.2" rel="Chapter" title="6.2 Access Links"/>
<link href="#rfc.section.6.3" rel="Chapter" title="6.3 Example Bottleneck Link Parameters"/>
<link href="#rfc.section.6.4" rel="Chapter" title="6.4 DropTail Router Queue Parameters"/>
<link href="#rfc.section.6.5" rel="Chapter" title="6.5 Media Flow Parameters"/>
<link href="#rfc.section.6.6" rel="Chapter" title="6.6 Cross-traffic Parameters"/>
<link href="#rfc.section.7" rel="Chapter" title="7 Status of Proposals"/>
<link href="#rfc.section.8" rel="Chapter" title="8 Security Considerations"/>
<link href="#rfc.section.9" rel="Chapter" title="9 IANA Considerations"/>
<link href="#rfc.section.10" rel="Chapter" title="10 Contributors"/>
<link href="#rfc.section.11" rel="Chapter" title="11 Acknowledgements"/>
<link href="#rfc.references" rel="Chapter" title="12 References"/>
<link href="#rfc.references.1" rel="Chapter" title="12.1 Normative References"/>
<link href="#rfc.references.2" rel="Chapter" title="12.2 Informative References"/>
<link href="#rfc.appendix.A" rel="Chapter" title="A Application Trade-off"/>
<link href="#rfc.appendix.A.1" rel="Chapter" title="A.1 Measuring Quality"/>
<link href="#rfc.appendix.B" rel="Chapter" title="B Proposal to evaluate Self-fairness of RMCAT congestion control algorithm"/>
<link href="#rfc.appendix.B.1" rel="Chapter" title="B.1 Evaluation Parameters"/>
<link href="#rfc.appendix.B.1.1" rel="Chapter" title="B.1.1 Media Traffic Generator"/>
<link href="#rfc.appendix.B.1.2" rel="Chapter" title="B.1.2 Bottleneck Link Bandwidth"/>
<link href="#rfc.appendix.B.1.3" rel="Chapter" title="B.1.3 Bottleneck Link Queue Type and Length"/>
<link href="#rfc.appendix.B.1.4" rel="Chapter" title="B.1.4 RMCAT flows and delay legs"/>
<link href="#rfc.appendix.B.1.5" rel="Chapter" title="B.1.5 Impairment Generator"/>
<link href="#rfc.appendix.B.2" rel="Chapter" title="B.2 Proposed Passing Criteria"/>
<link href="#rfc.appendix.B.3" rel="Chapter" title="B.3 Extensibility of the Experiment"/>
<link href="#rfc.appendix.C" rel="Chapter" title="C Change Log"/>
<link href="#rfc.appendix.C.1" rel="Chapter" title="C.1 Changes in draft-singh-rmcat-cc-eval-04"/>
<link href="#rfc.appendix.C.2" rel="Chapter" title="C.2 Changes in draft-singh-rmcat-cc-eval-03"/>
<link href="#rfc.appendix.C.3" rel="Chapter" title="C.3 Changes in draft-singh-rmcat-cc-eval-02"/>
<link href="#rfc.appendix.C.4" rel="Chapter" title="C.4 Changes in draft-singh-rmcat-cc-eval-01"/>
<link href="#rfc.authors" rel="Chapter"/>
<meta name="generator" content="xml2rfc version 2.4.0 - http://tools.ietf.org/tools/xml2rfc" />
<link rel="schema.dct" href="http://purl.org/dc/terms/" />
<meta name="dct.creator" content="Singh, V. and J. Ott" />
<meta name="dct.identifier" content="urn:ietf:id:draft-singh-rmcat-cc-eval-04" />
<meta name="dct.issued" scheme="ISO8601" content="2013-10-20" />
<meta name="dct.abstract" content="The Real-time Transport Protocol (RTP) is used to transmit media in telephony and video conferencing applications. This document describes the guidelines to evaluate new congestion control algorithms for interactive point-to-point real-time media." />
<meta name="description" content="The Real-time Transport Protocol (RTP) is used to transmit media in telephony and video conferencing applications. This document describes the guidelines to evaluate new congestion control algorithms for interactive point-to-point real-time media." />
</head>
<body>
<table class="header">
<tbody>
<tr>
<td class="left">RMCAT WG</td>
<td class="right">V. Singh</td>
</tr>
<tr>
<td class="left">Internet-Draft</td>
<td class="right">J. Ott</td>
</tr>
<tr>
<td class="left">Intended status: Informational</td>
<td class="right">Aalto University</td>
</tr>
<tr>
<td class="left">Expires: April 23, 2014</td>
<td class="right">October 20, 2013</td>
</tr>
</tbody>
</table>
<p class="title">Evaluating Congestion Control for Interactive Real-time Media <br />
<span class="filename">draft-singh-rmcat-cc-eval-04</span></p>
<h1 id="rfc.abstract">
<a href="#rfc.abstract">Abstract</a>
</h1>
<p>The Real-time Transport Protocol (RTP) is used to transmit media in telephony and video conferencing applications. This document describes the guidelines to evaluate new congestion control algorithms for interactive point-to-point real-time media.</p>
<h1 id="rfc.status">
<a href="#rfc.status">Status of This Memo</a>
</h1>
<p>This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.</p>
<p>Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.</p>
<p>Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."</p>
<p>This Internet-Draft will expire on April 23, 2014.</p>
<h1 id="rfc.copyrightnotice">
<a href="#rfc.copyrightnotice">Copyright Notice</a>
</h1>
<p>Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights reserved.</p>
<p>This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.</p>
<hr class="noprint" />
<h1 class="np" id="rfc.toc"><a href="#rfc.toc">Table of Contents</a></h1>
<ul class="toc">
<li>1. <a href="#rfc.section.1">Introduction</a></li>
<li>2. <a href="#rfc.section.2">Terminology</a></li>
<li>3. <a href="#rfc.section.3">Metrics</a></li>
<li>3.1. <a href="#rfc.section.3.1">RTP Log Format</a></li>
<li>4. <a href="#rfc.section.4">Guidelines</a></li>
<li>4.1. <a href="#rfc.section.4.1">Avoiding Congestion Collapse</a></li>
<li>4.2. <a href="#rfc.section.4.2">Stability</a></li>
<li>4.3. <a href="#rfc.section.4.3">Media Traffic</a></li>
<li>4.4. <a href="#rfc.section.4.4">Start-up Behaviour</a></li>
<li>4.5. <a href="#rfc.section.4.5">Diverse Environments</a></li>
<li>4.6. <a href="#rfc.section.4.6">Varying Path Characteristics</a></li>
<li>4.7. <a href="#rfc.section.4.7">Reacting to Transient Events or Interruptions</a></li>
<li>4.8. <a href="#rfc.section.4.8">Fairness With Similar Cross-Traffic</a></li>
<li>4.9. <a href="#rfc.section.4.9">Impact on Cross-Traffic</a></li>
<li>4.10. <a href="#rfc.section.4.10">Extensions to RTP/RTCP</a></li>
<li>5. <a href="#rfc.section.5">Minimum Requirements for Evaluation</a></li>
<li>6. <a href="#rfc.section.6">Evaluation Parameters</a></li>
<li>6.1. <a href="#rfc.section.6.1">Bottleneck Traffic Flows</a></li>
<li>6.2. <a href="#rfc.section.6.2">Access Links</a></li>
<li>6.3. <a href="#rfc.section.6.3">Example Bottleneck Link Parameters</a></li>
<li>6.4. <a href="#rfc.section.6.4">DropTail Router Queue Parameters</a></li>
<li>6.5. <a href="#rfc.section.6.5">Media Flow Parameters</a></li>
<li>6.6. <a href="#rfc.section.6.6">Cross-traffic Parameters</a></li>
<li>7. <a href="#rfc.section.7">Status of Proposals</a></li>
<li>8. <a href="#rfc.section.8">Security Considerations</a></li>
<li>9. <a href="#rfc.section.9">IANA Considerations</a></li>
<li>10. <a href="#rfc.section.10">Contributors</a></li>
<li>11. <a href="#rfc.section.11">Acknowledgements</a></li>
<li>12. <a href="#rfc.references">References</a></li>
<li>12.1. <a href="#rfc.references.1">Normative References</a></li>
<li>12.2. <a href="#rfc.references.2">Informative References</a></li>
<li>Appendix A. <a href="#rfc.appendix.A">Application Trade-off</a></li>
<li>A.1. <a href="#rfc.appendix.A.1">Measuring Quality</a></li>
<li>Appendix B. <a href="#rfc.appendix.B">Proposal to evaluate Self-fairness of RMCAT congestion control algorithm</a></li>
<li>B.1. <a href="#rfc.appendix.B.1">Evaluation Parameters</a></li>
<li>B.1.1. <a href="#rfc.appendix.B.1.1">Media Traffic Generator</a></li>
<li>B.1.2. <a href="#rfc.appendix.B.1.2">Bottleneck Link Bandwidth</a></li>
<li>B.1.3. <a href="#rfc.appendix.B.1.3">Bottleneck Link Queue Type and Length</a></li>
<li>B.1.4. <a href="#rfc.appendix.B.1.4">RMCAT flows and delay legs</a></li>
<li>B.1.5. <a href="#rfc.appendix.B.1.5">Impairment Generator</a></li>
<li>B.2. <a href="#rfc.appendix.B.2">Proposed Passing Criteria</a></li>
<li>B.3. <a href="#rfc.appendix.B.3">Extensibility of the Experiment</a></li>
<li>Appendix C. <a href="#rfc.appendix.C">Change Log</a></li>
<li>C.1. <a href="#rfc.appendix.C.1">Changes in draft-singh-rmcat-cc-eval-04</a></li>
<li>C.2. <a href="#rfc.appendix.C.2">Changes in draft-singh-rmcat-cc-eval-03</a></li>
<li>C.3. <a href="#rfc.appendix.C.3">Changes in draft-singh-rmcat-cc-eval-02</a></li>
<li>C.4. <a href="#rfc.appendix.C.4">Changes in draft-singh-rmcat-cc-eval-01</a></li>
<li><a href="#rfc.authors">Authors' Addresses</a></li>
</ul>
<h1 id="rfc.section.1"><a href="#rfc.section.1">1.</a> Introduction</h1>
<p id="rfc.section.1.p.1">This memo describes the guidelines to help with evaluating new congestion control algorithms for interactive point-to-point real time media. The requirements for the congestion control algorithm are outlined in <a href="#I-D.jesup-rmcat-reqs">[I-D.jesup-rmcat-reqs]</a>). This document builds upon previous work at the IETF: <a href="#RFC5033">Specifying New Congestion Control Algorithms</a> <cite title="NONE">[RFC5033]</cite> and <a href="#RFC5166">Metrics for the Evaluation of Congestion Control Algorithms</a> <cite title="NONE">[RFC5166]</cite>.</p>
<p id="rfc.section.1.p.2">The guidelines proposed in the document are intended to help prevent a congestion collapse, promote fair capacity usage and optimize the media flow's throughput. Furthermore, the proposed algorithms are expected to operate within the envelope of the circuit breakers defined in <a href="#I-D.ietf-avtcore-rtp-circuit-breakers">[I-D.ietf-avtcore-rtp-circuit-breakers]</a>.</p>
<p id="rfc.section.1.p.3">This document only provides broad-level criteria for evaluating a new congestion control algorithm and the working group should expect a thorough scientific study to make its decision. The results of the evaluation are not expected to be included within the internet-draft but should be cited in the document.</p>
<h1 id="rfc.section.2"><a href="#rfc.section.2">2.</a> <a href="#sec-terminology" id="sec-terminology">Terminology</a></h1>
<p id="rfc.section.2.p.1">The terminology defined in <a href="#RFC3550">RTP</a> <cite title="NONE">[RFC3550]</cite>, <a href="#RFC3551">RTP Profile for Audio and Video Conferences with Minimal Control</a> <cite title="NONE">[RFC3551]</cite>, <a href="#RFC3611">RTCP Extended Report (XR)</a> <cite title="NONE">[RFC3611]</cite>, <a href="#RFC4585">Extended RTP Profile for RTCP-based Feedback (RTP/AVPF)</a> <cite title="NONE">[RFC4585]</cite> and <a href="#RFC5506">Support for Reduced-Size RTCP</a> <cite title="NONE">[RFC5506]</cite> apply.</p>
<h1 id="rfc.section.3"><a href="#rfc.section.3">3.</a> <a href="#cc-metrics" id="cc-metrics">Metrics</a></h1>
<p><a href="#RFC5166">[RFC5166]</a> describes the basic metrics for congestion control. Metrics that are of interest for interactive multimedia are: </p>
<ul>
<li>Throughput.</li>
<li>Minimizing oscillations in the transmission rate (stability) when the end-to-end capacity varies slowly.</li>
<li>Delay.</li>
<li>Reactivity to transient events.</li>
<li>Packet losses and discards.</li>
<li>Section 2.1 of <a href="#RFC5166">[RFC5166]</a> discusses the tradeoff between throughput, delay and loss.</li>
</ul>
<p id="rfc.section.3.p.2">Each experiment is expected to log every incoming and outgoing packet (the RTP logging format is described in <a href="#rtp-logging">Section 3.1</a>). The logging can be done inside the application or at the endpoints using pcap (packet capture, e.g., tcpdump, wireshark). The following are calculated based on the information in the packet logs: </p>
<ol>
<li>Sending rate, Receiver rate, Goodput</li>
<li>Packet delay</li>
<li>Packet loss</li>
<li>If using, retransmission or FEC: residual loss</li>
<li>Packets discarded from the playout or de-jitter buffer</li>
</ol>
<p id="rfc.section.3.p.3">[Open issue (1): The "unfairness" test is (measured at 1s intervals):<br/> 1. Do not trigger the circuit breaker.<br/> 2. Over 3 times or less than 1/3 times the throughput for an RMCAT media stream compared to identical RMCAT streams competing on a bottleneck, for a case when the competing streams have similar RTTs.<br/> 3. Over 3 times delay compared to RTT measurements performed before starting the RMCAT flow or for the case when competing with identical RMCAT streams having similar RTTs.<br/> ]</p>
<p id="rfc.section.3.p.4">[Open issue (2): Possibly using Jain-fairness index.]</p>
<p id="rfc.section.3.p.5">Convergence time: the time taken to reach a stable rate at startup, after the available link capacity changes, or when new flows get added to the bottleneck link.</p>
<p id="rfc.section.3.p.6">Bandwidth Utilization, defined as ratio of the instantaneous sending rate to the instantaneous bottleneck capacity. This metric is useful when an RMCAT flow is by itself or competing with similar cross-traffic.</p>
<p id="rfc.section.3.p.7">From the logs the statistical measures (min, max, mean, standard deviation and variance) for the whole duration or any specific part of the session can be calculated. Also the metrics (sending rate, receiver rate, goodput, latency) can be visualized in graphs as variation over time, the measurements in the plot are at 1 second intervals. Additionally, from the logs it is possible to plot the histogram or CDF of packet delay.</p>
<p/>
<h1 id="rfc.section.3.1"><a href="#rfc.section.3.1">3.1.</a> <a href="#rtp-logging" id="rtp-logging">RTP Log Format</a></h1>
<p id="rfc.section.3.1.p.1">The log file is tab or comma separated containing the following details:</p>
<pre>
Send or receive timestamp (unix)
RTP payload type
SSRC
RTP sequence no
RTP timestamp
marker bit
payload size
</pre>
<p class="figure"></p>
<p id="rfc.section.3.1.p.2">If the congestion control implements, retransmissions or FEC, the evaluation should report both packet loss (before applying error-resilience) and residual packet loss (after applying error-resilience).</p>
<h1 id="rfc.section.4"><a href="#rfc.section.4">4.</a> <a href="#cc-guidelines" id="cc-guidelines">Guidelines</a></h1>
<p id="rfc.section.4.p.1">A congestion control algorithm should be tested in simulation or a testbed environment, and the experiments should be repeated multiple times to infer statistical significance. The following guidelines are considered for evaluation:</p>
<h1 id="rfc.section.4.1"><a href="#rfc.section.4.1">4.1.</a> Avoiding Congestion Collapse</h1>
<p id="rfc.section.4.1.p.1">The congestion control algorithm is expected to take an action, such as reducing the sending rate, when it detects congestion. Typically, it should intervene before the circuit breaker <a href="#I-D.ietf-avtcore-rtp-circuit-breakers">[I-D.ietf-avtcore-rtp-circuit-breakers]</a> is engaged. </p>
<p id="rfc.section.4.1.p.2">Does the congestion control propose any changes to (or diverge from) the circuit breaker conditions defined in <a href="#I-D.ietf-avtcore-rtp-circuit-breakers">[I-D.ietf-avtcore-rtp-circuit-breakers]</a>.</p>
<h1 id="rfc.section.4.2"><a href="#rfc.section.4.2">4.2.</a> Stability</h1>
<p id="rfc.section.4.2.p.1">The congestion control should be assessed for its stability when the path characteristics do not change over time. Changing the media encoding rate estimate too often or by too much may adversely affect the application layer performance.</p>
<h1 id="rfc.section.4.3"><a href="#rfc.section.4.3">4.3.</a> Media Traffic</h1>
<p id="rfc.section.4.3.p.1">The congestion control algorithm should be assessed with different types of media behavior, i.e., the media should contain idle and data-limited periods. For example, periods of silence for audio, varying amount of motion for video, or bursty nature of I-frames. </p>
<p id="rfc.section.4.3.p.2">The evaluation may be done in two stages. In the first stage, the endpoint generates traffic at the rate calculated by the congestion controller. In the second stage, real codecs or models of video codecs are used to mimic application-limited data periods and varying video frame sizes.</p>
<h1 id="rfc.section.4.4"><a href="#rfc.section.4.4">4.4.</a> Start-up Behaviour</h1>
<p id="rfc.section.4.4.p.1">The congestion control algorithm should be assessed with different start-rates. The main reason is to observe the behavior of the congestion control in different evaluation scenarios, such as when competing with varying amount of cross-traffic or how quickly does the congestion control algorithm achieve a stable sending rate.</p>
<p id="rfc.section.4.4.p.2">[Editor's note: requires a robust definition for unfriendliness and convergence time.]</p>
<h1 id="rfc.section.4.5"><a href="#rfc.section.4.5">4.5.</a> Diverse Environments</h1>
<p id="rfc.section.4.5.p.1">The congestion control algorithm should be assessed in heterogeneous environments, containing both wired and wireless paths. Examples of wireless access technologies are: 802.11, GPRS, HSPA, or LTE. One of the main challenges of the wireless environments for the congestion control algorithm is to distinguish between congestion induced loss and transmission (bit-error corruption) loss. Congestion control algorithms may incorrectly identify transmission loss as congestion loss and reduce the media encoding rate by too much, which may cause oscillatory behavior and deteriorate the users' quality of experience. Furthermore, packet loss may induce additional delay in networks with wireless paths due to link-layer retransmissions.</p>
<h1 id="rfc.section.4.6"><a href="#rfc.section.4.6">4.6.</a> Varying Path Characteristics</h1>
<p id="rfc.section.4.6.p.1">The congestion control algorithm should be evaluated for a range of path characteristics such as, different end-to-end capacity and latency, varying amount of cross traffic on a bottleneck link and a router's queue length. For the moment, only DropTail queues are used. However, if new Active Queue Management (AQM) schemes become available, the performance of the congestion control algorithm should be again evaluated.</p>
<p id="rfc.section.4.6.p.2">In an experiment, if the media only flows in a single direction, the feedback path should also be tested with varying amounts of impairments.</p>
<p id="rfc.section.4.6.p.3">The main motivation for the previous and current criteria is to identify situations in which the proposed congestion control is less performant.</p>
<h1 id="rfc.section.4.7"><a href="#rfc.section.4.7">4.7.</a> Reacting to Transient Events or Interruptions</h1>
<p id="rfc.section.4.7.p.1">The congestion control algorithm should be able to handle changes in end-to-end capacity and latency. Latency may change due to route updates, link failures, handovers etc. In mobile environment the end-to-end capacity may vary due to the interference, fading, handovers, etc. In wired networks the end-to-end capacity may vary due to changes in resource reservation.</p>
<h1 id="rfc.section.4.8"><a href="#rfc.section.4.8">4.8.</a> Fairness With Similar Cross-Traffic</h1>
<p id="rfc.section.4.8.p.1">The congestion control algorithm should be evaluated when competing with other RTP flows using the same or another candidate congestion control algorithm. The proposal should highlight the bottleneck capacity share of each RTP flow.</p>
<p id="rfc.section.4.8.p.2">[Editor's note: If we define Unfriendliness then that criteria should be applied here.]</p>
<h1 id="rfc.section.4.9"><a href="#rfc.section.4.9">4.9.</a> Impact on Cross-Traffic</h1>
<p id="rfc.section.4.9.p.1">The congestion control algorithm should be evaluated when competing with standard TCP. Short TCP flows may be considered as transient events and the RTP flow may give way to the short TCP flow to complete quickly. However, long-lived TCP flows may starve out the RTP flow depending on router queue length. </p>
<p id="rfc.section.4.9.p.2">The proposal should also measure the impact on varied number of cross-traffic sources, i.e., few and many competing flows, or mixing various amounts of TCP and similar cross-traffic.</p>
<h1 id="rfc.section.4.10"><a href="#rfc.section.4.10">4.10.</a> Extensions to RTP/RTCP</h1>
<p id="rfc.section.4.10.p.1">The congestion control algorithm should indicate if any protocol extensions are required to implement it and should carefully describe the impact of the extension.</p>
<h1 id="rfc.section.5"><a href="#rfc.section.5">5.</a> Minimum Requirements for Evaluation</h1>
<p id="rfc.section.5.p.1">[Editor's Note: If needed, a minimum evaluation criteria can be based on the above guidelines or defined tests/scenarios.]</p>
<h1 id="rfc.section.6"><a href="#rfc.section.6">6.</a> <a href="#cc-fw" id="cc-fw">Evaluation Parameters</a></h1>
<p id="rfc.section.6.p.1">An evaluation scenario is created from a list of network, link and flow characteristics. The example parameters discussed in the following subsections are meant to aid in creating evaluation scenarios and do not describe an evaluation scenario. The scenario discussed in <a href="#app-scenario-1">Appendix B</a> takes into account all these parameters.</p>
<h1 id="rfc.section.6.1"><a href="#rfc.section.6.1">6.1.</a> <a href="#eval-scen-traffic" id="eval-scen-traffic">Bottleneck Traffic Flows</a></h1>
<p id="rfc.section.6.1.p.1">The network scenario describes the types of flows sharing the common bottleneck with a single RMCAT flow, they are: </p>
<ol>
<li>A single RMCAT flow by itself.</li>
<li>Competing with similar RMCAT flows. These competing flows may use the same algorithm or another candidate RMCAT algorithm.</li>
<li>Compete with long-lived TCP.</li>
<li>Compete with bursty TCP.</li>
<li>Compete with LEDBAT flows.</li>
<li>Compete with unresponsive interactive media flows (i.e., not only CBR).</li>
</ol>
<p><a href="#fig-eval-topo">Figure 1</a> shows an example evaluation topology, where S1..Sn are traffic sources, these sources are either RMCAT or a mixture of traffic flows listed above. R1..Rn are the corresponding receivers. A and B are routers that can be configured to introduce impairments. Access links are in between the sender/receiver and the router, while the bottleneck link is between the Routers A and B.</p>
<div id="rfc.figure.1"/>
<div id="fig-eval-topo"/>
<pre>
+---+ Access Access +---+
|S1 |======= \ / =======|R1 |
+---+ link \\ // link +---+
\\ //
+---+ +-----+ Bottleneck +-----+ +---+
|S2 |=======| A |------------------------------>| B |=======|R2 |
+---+ | |<------------------------------| | +---+
+-----+ Link +-----+
(...) // \\ (...)
// \\
+---+ // \\ +---+
|Sn |====== / \ ======|Rn |
+---+ +---+
</pre>
<p class="figure">Figure 1: Simple Topology</p>
<p id="rfc.section.6.1.p.3">[Open Issue: Discuss more complex topologies]</p>
<h1 id="rfc.section.6.2"><a href="#rfc.section.6.2">6.2.</a> Access Links</h1>
<p id="rfc.section.6.2.p.1">The media senders and receivers are typically connected to the bottleneck link, common access links are: </p>
<ol>
<li>Ethernet (LAN)</li>
<li>Wireless LAN (WLAN) </li>
<li>3G/LTE</li>
</ol>
<p> [Open issue: point to a reference containing parameters or traces to model WLAN and 3G/LTE.] </p>
<p id="rfc.section.6.2.p.2">A real-world network typically consists of a mixture of links, the most important aspect is to identify the location of the bottleneck link. The bottleneck link can move from one node to another depending on the amount of cross-traffic or due to the varying link capacity. The design of the experiments should take this into account. In the simplest case the access link may not be the bottleneck link but an intermediate node.</p>
<h1 id="rfc.section.6.3"><a href="#rfc.section.6.3">6.3.</a> Example Bottleneck Link Parameters</h1>
<p id="rfc.section.6.3.p.1">The bottleneck link carries multiple flows, these flows may be other RMCAT flows or other types of cross-traffic. The experiments should dimension the bottleneck link based on the number of flows and the expected behavior. For example, if 5 media flows are expected to share the bottleneck link equally, the bottleneck link is set to 5 times the desired transmission rate.</p>
<p id="rfc.section.6.3.p.2">If the experiment carries only media in one direction, then the upstream (sender to receiver) bottleneck link carries media packets while the downstream (receiver to sender) bottleneck carries the feedback packets. The bottleneck link parameters discussed in this section apply only to a single direction, hence the bottleneck link in the reverse direction can choose the same or have different parameters.</p>
<p id="rfc.section.6.3.p.3">The link latency corresponds to the propagation delay of the link, i.e., the time it takes for a packet to traverse the bottleneck link, it does not include queuing delay. In an experiment with several links the experiment should describe if the links add latency or not. It is possible for experiments to have multiple hops with different link latencies. Experiments are expected to verify that the congestion control is able to work in challenging situations, for example over trans-continental and/or satellite links. The experiment should pick link latency values from the following: </p>
<ol>
<li>Very low latency: 0-1ms</li>
<li>Low latency: 50ms </li>
<li>High latency: 150ms </li>
<li>Extreme latency: 300ms</li>
</ol>
<p id="rfc.section.6.3.p.4">Similarly, to model lossy links, the experiments can choose one of the following loss rates, the fractional loss is the ratio of packets lost and packets sent. </p>
<ol>
<li>no loss: 0%</li>
<li>1% </li>
<li>5% </li>
<li>10%</li>
<li>20%</li>
</ol>
<p> These fractional losses can be generated using traces, Gilbert-Elliot model, randomly (uncorrelated) loss.</p>
<h1 id="rfc.section.6.4"><a href="#rfc.section.6.4">6.4.</a> <a href="#scen-queue" id="scen-queue">DropTail Router Queue Parameters</a></h1>
<p id="rfc.section.6.4.p.1">The router queue length is measured as the time taken to drain the FIFO queue, they are: </p>
<ol>
<li>QoS-aware (or short): 70ms</li>
<li>Nominal: 500ms </li>
<li>Buffer-bloated: 2000ms</li>
</ol>
<p> However, the size of the queue is typically measured in bytes or packets and to convert the queue length measured in seconds to queue length in bytes: </p>
<p id="rfc.section.6.4.p.2">QueueSize (in bytes) = QueueSize (in sec) x Throughput (in bps)/8</p>
<h1 id="rfc.section.6.5"><a href="#rfc.section.6.5">6.5.</a> Media Flow Parameters</h1>
<p id="rfc.section.6.5.p.1">The media sources can be modeled in two ways. In the first, the sources always have data to send, i.e., have no data limited intervals and are able to generate the media rate requested by the RMCAT congestion control algorithm. In the second, the traffic generator models the behavior of a media codec, mainly the burstiness (time-varying data produced by a video GOP).</p>
<p id="rfc.section.6.5.p.2">At the beginning of the session, the media sources are configured to start at a given start rate, they are: </p>
<ol>
<li>200 kbps</li>
<li>800 kbps</li>
<li>1300 kbps</li>
<li>4000 kbps</li>
</ol>
<h1 id="rfc.section.6.6"><a href="#rfc.section.6.6">6.6.</a> Cross-traffic Parameters</h1>
<p id="rfc.section.6.6.p.1">Long-lived TCP flows will download data throughout the session and are expected to have infinite amount of data to send or receive.]</p>
<p id="rfc.section.6.6.p.2">[Open issue: short-lived/bursty TCP cross-traffic parameters are still TBD.</p>
<h1 id="rfc.section.7"><a href="#rfc.section.7">7.</a> <a href="#cc-proposal" id="cc-proposal">Status of Proposals</a></h1>
<p id="rfc.section.7.p.1">Congestion control algorithms are expected to be published as "Experimental" documents until they are shown to be safe to deploy. An algorithm published as a draft should be experimented in simulation, or a controlled environment (testbed) to show its applicability. Every congestion control algorithm should include a note describing the environments in which the algorithm is tested and safe to deploy. It is possible that an algorithm is not recommended for certain environments or perform sub-optimally for the user.</p>
<p id="rfc.section.7.p.2">[Editor's Note: Should there be a distinction between "Informational" and "Experimental" drafts for congestion control algorithms in RMCAT. <a href="#RFC5033">[RFC5033]</a> describes Informational proposals as algorithms that are not safe for deployment but are proposals to experiment with in simulation/testbeds. While Experimental algorithms are ones that are deemed safe in some environments but require a more thorough evaluation (from the community).]</p>
<h1 id="rfc.section.8"><a href="#rfc.section.8">8.</a> Security Considerations</h1>
<p id="rfc.section.8.p.1">Security issues have not been discussed in this memo.</p>
<h1 id="rfc.section.9"><a href="#rfc.section.9">9.</a> IANA Considerations</h1>
<p id="rfc.section.9.p.1">There are no IANA impacts in this memo.</p>
<h1 id="rfc.section.10"><a href="#rfc.section.10">10.</a> <a href="#contrib" id="contrib">Contributors</a></h1>
<p id="rfc.section.10.p.1">The content and concepts within this document are a product of the discussion carried out in the Design Team.</p>
<p id="rfc.section.10.p.2">Michael Ramalho provided the text for the scenario discussed in <a href="#app-scenario-1">Appendix B</a>.</p>
<h1 id="rfc.section.11"><a href="#rfc.section.11">11.</a> Acknowledgements</h1>
<p id="rfc.section.11.p.1">Much of this document is derived from previous work on congestion control at the IETF.</p>
<p id="rfc.section.11.p.2">The authors would like to thank Harald Alvestrand, Luca De Cicco, Wesley Eddy, Lars Eggert, Kevin Gross, Vinayak Hegde, Stefan Holmer, Randell Jesup, Piers O'Hanlon, Colin Perkins, Michael Ramalho, Zaheduzzaman Sarker, Timothy B. Terriberry, Michael Welzl, and Mo Zanaty for providing valuable feedback on earlier versions of this draft. Additionally, also thank the participants of the design team for their comments and discussion related to the evaluation criteria.</p>
<h1 id="rfc.references"><a href="#rfc.references">12.</a> References</h1>
<h1 id="rfc.references.1"><a href="#rfc.references.1">12.1.</a> Normative References</h1>
<table>
<tbody>
<tr>
<td class="reference">
<b id="RFC3550">[RFC3550]</b>
</td>
<td class="top"><a>Schulzrinne, H.</a>, <a>Casner, S.</a>, <a>Frederick, R.</a> and <a>V. Jacobson</a>, "<a href="http://tools.ietf.org/html/rfc3550">RTP: A Transport Protocol for Real-Time Applications</a>", STD 64, RFC 3550, July 2003.</td>
</tr>
<tr>
<td class="reference">
<b id="RFC3551">[RFC3551]</b>
</td>
<td class="top"><a>Schulzrinne, H.</a> and <a>S. Casner</a>, "<a href="http://tools.ietf.org/html/rfc3551">RTP Profile for Audio and Video Conferences with Minimal Control</a>", STD 65, RFC 3551, July 2003.</td>
</tr>
<tr>
<td class="reference">
<b id="RFC3611">[RFC3611]</b>
</td>
<td class="top"><a>Friedman, T.</a>, <a>Caceres, R.</a> and <a>A. Clark</a>, "<a href="http://tools.ietf.org/html/rfc3611">RTP Control Protocol Extended Reports (RTCP XR)</a>", RFC 3611, November 2003.</td>
</tr>
<tr>
<td class="reference">
<b id="RFC4585">[RFC4585]</b>
</td>
<td class="top"><a>Ott, J.</a>, <a>Wenger, S.</a>, <a>Sato, N.</a>, <a>Burmeister, C.</a> and <a>J. Rey</a>, "<a href="http://tools.ietf.org/html/rfc4585">Extended RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/AVPF)</a>", RFC 4585, July 2006.</td>
</tr>
<tr>
<td class="reference">
<b id="RFC5506">[RFC5506]</b>
</td>
<td class="top"><a>Johansson, I.</a> and <a>M. Westerlund</a>, "<a href="http://tools.ietf.org/html/rfc5506">Support for Reduced-Size Real-Time Transport Control Protocol (RTCP): Opportunities and Consequences</a>", RFC 5506, April 2009.</td>
</tr>
<tr>
<td class="reference">
<b id="I-D.jesup-rmcat-reqs">[I-D.jesup-rmcat-reqs]</b>
</td>
<td class="top"><a>Jesup, R.</a>, "<a href="http://tools.ietf.org/html/draft-jesup-rmcat-reqs-01">Congestion Control Requirements For RMCAT</a>", Internet-Draft draft-jesup-rmcat-reqs-01, February 2013.</td>
</tr>
<tr>
<td class="reference">
<b id="I-D.ietf-avtcore-rtp-circuit-breakers">[I-D.ietf-avtcore-rtp-circuit-breakers]</b>
</td>
<td class="top"><a>Perkins, C.</a> and <a>V. Singh</a>, "<a href="http://tools.ietf.org/html/draft-ietf-avtcore-rtp-circuit-breakers-01">RTP Congestion Control: Circuit Breakers for Unicast Sessions</a>", Internet-Draft draft-ietf-avtcore-rtp-circuit-breakers-01, October 2012.</td>
</tr>
</tbody>
</table>
<h1 id="rfc.references.2"><a href="#rfc.references.2">12.2.</a> Informative References</h1>
<table>
<tbody>
<tr>
<td class="reference">
<b id="RFC5033">[RFC5033]</b>
</td>
<td class="top"><a>Floyd, S.</a> and <a>M. Allman</a>, "<a href="http://tools.ietf.org/html/rfc5033">Specifying New Congestion Control Algorithms</a>", BCP 133, RFC 5033, August 2007.</td>
</tr>
<tr>
<td class="reference">
<b id="RFC5166">[RFC5166]</b>
</td>
<td class="top"><a>Floyd, S.</a>, "<a href="http://tools.ietf.org/html/rfc5166">Metrics for the Evaluation of Congestion Control Mechanisms</a>", RFC 5166, March 2008.</td>
</tr>
<tr>
<td class="reference">
<b id="RFC5681">[RFC5681]</b>
</td>
<td class="top"><a>Allman, M.</a>, <a>Paxson, V.</a> and <a>E. Blanton</a>, "<a href="http://tools.ietf.org/html/rfc5681">TCP Congestion Control</a>", RFC 5681, September 2009.</td>
</tr>
<tr>
<td class="reference">
<b id="SA4-EVAL">[SA4-EVAL]</b>
</td>
<td class="top"><a>R1-081955, 3GPP.</a>, "<a>LTE Link Level Throughput Data for SA4 Evaluation Framework</a>", 3GPP R1-081955, 5 2008.</td>
</tr>
<tr>
<td class="reference">
<b id="SA4-LR">[SA4-LR]</b>
</td>
<td class="top"><a>S4-050560, 3GPP.</a>, "<a>Error Patterns for MBMS Streaming over UTRAN and GERAN</a>", 3GPP S4-050560, 5 2008.</td>
</tr>
<tr>
<td class="reference">
<b id="TCP-eval-suite">[TCP-eval-suite]</b>
</td>
<td class="top"><a>Lachlan, A.</a>, <a>Marcondes, C.</a>, <a>Floyd, S.</a>, <a>Dunn, L.</a>, <a>Guillier, R.</a>, <a>Gang, W.</a>, <a>Eggert, L.</a>, <a>Ha, S.</a> and <a>I. Rhee</a>, "<a>Towards a Common TCP Evaluation Suite</a>", Proc. PFLDnet. 2008, August 2008.</td>
</tr>
</tbody>
</table>
<h1 id="rfc.appendix.A"><a href="#rfc.appendix.A">Appendix A.</a> <a href="#misc" id="misc">Application Trade-off</a></h1>
<p id="rfc.section.A.p.1">Application trade-off is yet to be defined. see <a href="#I-D.jesup-rmcat-reqs">RMCAT requirements</a> <cite title="NONE">[I-D.jesup-rmcat-reqs]</cite> document. Perhaps each experiment should define the application's expectation or trade-off.</p>
<h1 id="rfc.appendix.A.1"><a href="#rfc.appendix.A.1">A.1.</a> <a href="#misc-2" id="misc-2">Measuring Quality</a></h1>
<p id="rfc.section.A.1.p.1">No quality metric is defined for performance evaluation, it is currently an open issue. However, there is consensus that congestion control algorithm should be able to show that it is useful for interactive video by performing analysis using a real codec and video sequences. </p>
<h1 id="rfc.appendix.B"><a href="#rfc.appendix.B">Appendix B.</a> <a href="#app-scenario-1" id="app-scenario-1">Proposal to evaluate Self-fairness of RMCAT congestion control algorithm</a></h1>
<p id="rfc.section.B.p.1">The goal of the experiment discussed in this section is to initially take out as many unknowns from the scenario. Later experiments can define more complex environments, topologies and media behavior. This experiment evaluates the performance of the RMCAT sender competing with other similar RMCAT flows (running the same algorithm or other RMCAT proposals) on the bottleneck link. There are up to 20 RMCAT flows competing for capacity, but the media only flows in one direction, from senders (S1..S20) to receivers (R1..R20) and the feedback packets flow in the reverse direction. </p>
<p><a href="#fig-exp1">Figure 2</a> shows the experiment setup and it has subtle differences compared to the simple topology in <a href="#fig-eval-topo">Figure 1</a>. Groups of 10 receivers are connected to the bottleneck link through two different routers (Router C and D). The rationale for adding these additional routers is to create two delay legs, i.e., two groups of endpoints with different network latencies and measure the performance of the RMCAT congestion control algorithm. If fewer than 10 sources are initialized, all traffic flows experience the same delay because they share the same delay leg. </p>
<p id="rfc.section.B.p.3">Router A has a single forward direction bottleneck link (i.e., the bottleneck capacity and delay constraints applies only to the media packets going from the sender to the receiver, the feedback packets are unaffected). Hence, the Round-Trip Time (RTT) is primarily composed of the bottleneck queue delay and any forward path (propagation) latency. The main reason for not applying any constraints on the return path is to provide the best-case performance scenario for the congestion control algorithm. In later experiments, it is possible to add similar capacity and delay constraints on the return path.</p>
<div id="rfc.figure.2"/>
<div id="fig-exp1"/>
<pre>
+---+
/ === |R1 |
+---+ +-----+ // +---+
|S1 |======= \ / =| C | //
+---+ \\ // +-----+ \\ (...)
\\ // \\
+---+ +-----+ Bottleneck +-----+ \\ +---+
|S2 |=======| A |-------------------->| B | \ ===|R10|
+---+ | |<--------------------| | +---+
+-----+ Link +-----+
(...) // \\ +---+
// \\ / === |R11|
+---+ // \\ +-----+ // +---+
|S20|====== / \ =| D |//
+---+ +-----+\\ (...)
\\
\\ +---+
\ ===|R20|
+---+
</pre>
<p class="figure">Figure 2: Self-fairness Evaluation Setup</p>
<p id="rfc.section.B.p.4">Loss impairments are applied at Router C and Router D, but only to the feedback flows. If the losses are set to 0%, it represents a case where the return path is over-provisioned for all traffic. In later experiments the loss impairments can be added to the media path as well. </p>
<p id="rfc.section.B.p.5">The media sources are configured to send infinite amount of data, i.e., the sources always have data to send and have no data limited intervals. Additionally, the media sources are always successful in generating the media rate requested by the RMCAT congestion control algorithm. In this experiment, we avoid the potentially complicated scenario of using media traffic generators that try to model the behavior of media codecs (mainly the burstiness). </p>
<h1 id="rfc.appendix.B.1"><a href="#rfc.appendix.B.1">B.1.</a> Evaluation Parameters</h1>
<h1 id="rfc.appendix.B.1.1"><a href="#rfc.appendix.B.1.1">B.1.1.</a> Media Traffic Generator</h1>
<p id="rfc.section.B.1.1.p.1">The media source always generates at the rate requested by the congestion control and has infinite data to send. Furthermore, the media packet generator is subject to the following constraints: </p>
<ol>
<li>It MUST emit a packet at least once per 100 ms time interval.</li>
<li>For low media rate source: when generating data at a rate less than a maximum length MTU every 100 ms would allow (e.g., 120 kbps = 1500 bytes/packet * 10 packets/sec * 8 bits/byte), the RMCAT source must modulate the packet size (RTP payload size) of RTP packets that are sent every 100 ms to attain the desired rate.</li>
<li>For high media rate sources: when generating data at a rate greater than a maximum length MTU every 100 ms would allow, the source must do so by sending (approximately) maximum MTU sized packets and adjusting the inter-departure interval to be approximately equal. The intent of this to ensure the data is sent relatively smoothly independent of the bit rate, subject to the first constraint.</li>
</ol>
<h1 id="rfc.appendix.B.1.2"><a href="#rfc.appendix.B.1.2">B.1.2.</a> Bottleneck Link Bandwidth</h1>
<p id="rfc.section.B.1.2.p.1">The bottleneck link capacity is dimensioned such that each RMCAT flow in an ideal situation with perfectly equal capacity sharing for all the flows on the bottleneck obtains the following throughputs: 200 kbps, 800 kbps, 1.3 Mbps and 4 Mbps.<br/> For example, experiments with five RMCAT flows with an 800 kbps/flow target rate should set the bottleneck link capacity to 4 Mbps. </p>
<h1 id="rfc.appendix.B.1.3"><a href="#rfc.appendix.B.1.3">B.1.3.</a> Bottleneck Link Queue Type and Length</h1>
<p id="rfc.section.B.1.3.p.1">The bottleneck link queue (Router A) is a simple FIFO queue having a buffer length corresponding to 70 ms, 500 ms or 2000 ms (defined in <a href="#scen-queue">Section 6.4</a>) of delay at the bottleneck link rate (i.e., actual buffer lengths in bytes are dependent on bottleneck link bandwidth).</p>
<h1 id="rfc.appendix.B.1.4"><a href="#rfc.appendix.B.1.4">B.1.4.</a> RMCAT flows and delay legs</h1>
<p id="rfc.section.B.1.4.p.1">Experiments run with 1, 3, 5, 10 and 20 RMCAT sources, they are outlined as follows: </p>
<ol>
<li>Experiments with 1, 3, and 5 RMCAT flows, all RMCAT flows commence simultaneously. A single delay leg is used and the link latency is set to one of the following : 0 ms, 50 ms and 150 ms. </li>
<li>For 10 and 20 source experiments where all RMCAT flows begin simultaneously the sources are split evenly into two different bulk delay legs. One leg is set to 0 ms bulk delay leg and the other is set to 150 ms. </li>
<li>For 10 and 20 source experiments where the first set will use 0 ms of bulk delay and the second set will use 150 ms bulk delay. <ol><li>Random starts within interval [0 ms, 500 ms].</li><li>One “early-coming” flow (i.e., the 1st flow starting and achieving steady-state before the next N-1 simultaneously begin). </li><li>One “late-coming” flow (i.e., the Nth flow starting after steady-state has occurred for the existing N-1 flows). </li></ol><p> These cases assess if there are any early or late-comer advantages or disadvantages for a particular algorithm and to see if any unfairness is reproducible or unpredictable.</p></li>
</ol>
<p id="rfc.section.B.1.4.p.2">[Open issue (A.1): which group does the early and late flow belong to?] </p>
<p id="rfc.section.B.1.4.p.3">[Open issue (A.2): Start rate for the media flows]</p>
<h1 id="rfc.appendix.B.1.5"><a href="#rfc.appendix.B.1.5">B.1.5.</a> Impairment Generator</h1>
<p id="rfc.section.B.1.5.p.1">Packet loss is created in the reverse path (affects only feedback packets). Cases of 0%, 1%, 5% and 10% are studied for the 1, 3, and 5 RMCAT flow experiments, losses are not applied to flows with 10 or 20 RMCAT flows. </p>
<h1 id="rfc.appendix.B.2"><a href="#rfc.appendix.B.2">B.2.</a> Proposed Passing Criteria</h1>
<p id="rfc.section.B.2.p.1">[Editor's note: there has been little or no discussion on the below criteria, however, they are listed here for the sake of completeness.</p>
<p id="rfc.section.B.2.p.2">No unfairness is observed, i.e., at steady state each flow attains a throughput between [ B/(3*N), (3*B)/N ], where B is the link bandwidth and N is the number of flows.</p>
<p id="rfc.section.B.2.p.3">No flow experiences packet loss when queue length is set to 500 ms or greater.</p>
<p id="rfc.section.B.2.p.4">All individual sources must be in their steady state within twenty LRTTs (where LRTT is defined as the RTT associated with the flow with the Largest RTT in the experiment). ]</p>
<h1 id="rfc.appendix.B.3"><a href="#rfc.appendix.B.3">B.3.</a> Extensibility of the Experiment</h1>
<p id="rfc.section.B.3.p.1">The above scenario describes only RMCAT sources competing for capacity on the bottleneck link, however, future experiments can use different types of cross-traffic (as described in <a href="#eval-scen-traffic">Section 6.1</a>).</p>
<p id="rfc.section.B.3.p.2">Currently, the forward path (carrying media packets) is characterized to add delay and a fixed bottleneck link capacity, in the future packet losses and capacity changes can be applied to mimic a wireless link layer (for e.g., WiFi, 3G, LTE). Additionally, only losses are applied to the reverse path (carrying feedback packets), later experiments can apply the same forward path (carrying media packets) impairments to the reverse path.</p>
<h1 id="rfc.appendix.C"><a href="#rfc.appendix.C">Appendix C.</a> <a href="#App-cl" id="App-cl">Change Log</a></h1>
<p id="rfc.section.C.p.1">Note to the RFC-Editor: please remove this section prior to publication as an RFC.</p>
<h1 id="rfc.appendix.C.1"><a href="#rfc.appendix.C.1">C.1.</a> Changes in draft-singh-rmcat-cc-eval-04</h1>
<p/>
<ul>
<li>Incorporate feedback from IETF 87, Berlin.</li>
<li>Clarified metrics: convergence time, bandwidth utilization.</li>
<li>Changed fairness criteria to fairness test.</li>
<li>Added measuring pre- and post-repair loss.</li>
<li>Added open issue of measuring video quality to appendix.</li>
<li>clarified use of DropTail and AQM.</li>
<li>Updated text in "Minimum Requirements for Evaluation"</li>
</ul>
<h1 id="rfc.appendix.C.2"><a href="#rfc.appendix.C.2">C.2.</a> Changes in draft-singh-rmcat-cc-eval-03</h1>
<p/>
<ul>
<li>Incorporate the discussion within the design team.</li>
<li>Added a section on evaluation parameters, it describes the flow and network characteristics.</li>
<li>Added Appendix with self-fairness experiment.</li>
<li>Changed bottleneck parameters from a proposal to an example set.</li>
<li/>
</ul>
<h1 id="rfc.appendix.C.3"><a href="#rfc.appendix.C.3">C.3.</a> Changes in draft-singh-rmcat-cc-eval-02</h1>
<p/>
<ul>
<li>Added scenario descriptions.</li>
</ul>
<h1 id="rfc.appendix.C.4"><a href="#rfc.appendix.C.4">C.4.</a> Changes in draft-singh-rmcat-cc-eval-01</h1>
<p/>
<ul>
<li>Removed QoE metrics.</li>
<li>Changed stability to steady-state.</li>
<li>Added measuring impact against few and many flows.</li>
<li>Added guideline for idle and data-limited periods.</li>
<li>Added reference to TCP evaluation suite in example evaluation scenarios.</li>
</ul>
<h1 id="rfc.authors">
<a href="#rfc.authors">Authors' Addresses</a>
</h1>
<div class="avoidbreak">
<address class="vcard">
<span class="vcardline">
<span class="fn">Varun Singh</span>
<span class="n hidden">
<span class="family-name">Singh</span>
</span>
</span>
<span class="org vcardline">Aalto University</span>
<span class="adr">
<span>School of Electrical Engineering</span>
<span>Otakaari 5 A</span>
<span class="vcardline">
<span class="locality">Espoo</span>,
<span class="region">FIN</span>
<span class="code">02150</span>
</span>
<span class="country-name vcardline">Finland</span>
</span>
<span class="vcardline">EMail: <a href="mailto:varun@comnet.tkk.fi">varun@comnet.tkk.fi</a></span>
<span class="vcardline">URI: <a href="http://www.netlab.tkk.fi/~varun/">http://www.netlab.tkk.fi/~varun/</a></span>
</address>
</div><div class="avoidbreak">
<address class="vcard">
<span class="vcardline">
<span class="fn">Joerg Ott</span>
<span class="n hidden">
<span class="family-name">Ott</span>
</span>
</span>
<span class="org vcardline">Aalto University</span>
<span class="adr">
<span>School of Electrical Engineering</span>
<span>Otakaari 5 A</span>
<span class="vcardline">
<span class="locality">Espoo</span>,
<span class="region">FIN</span>
<span class="code">02150</span>
</span>
<span class="country-name vcardline">Finland</span>
</span>
<span class="vcardline">EMail: <a href="mailto:jo@comnet.tkk.fi">jo@comnet.tkk.fi</a></span>
</address>
</div>
</body>
</html>